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Abstract. Cryptocurrencies are widely used today for anonymous transactions.
Such currencies rely on a peer-to-peer network where users can broadcast trans-
actions containing their pseudonyms and ask for approval. Previous research has
shown that application-level eavesdroppers, meaning nodes connected to a large
portion of the Bitcoin peer-to-peer network, are able to deanonymize multiple
users by tracing back the source of transactions. Yet, such attacks are highly visible
as the attacker needs to maintain thousands of outbound connections. Moreover,
they can be mitigated by purely application-layer countermeasures.
This paper presents a stealthier and harder-to-mitigate attack exploiting the inter-
actions between the networking and application layers. Particularly, the adversary
combines her access over Internet infrastructure with application-layer information
to deanonymize transactions. We show that this attack, namely PERIMETER, is
practical in today’s Internet, achieves high accuracy in Bitcoin, and generalizes to
encrypted cryptocurrencies e.g., Ethereum.

Keywords: deanonymization · Bitcoin · Ethereum · blockchain · BGP · routing
attack · network-layer attack

1 Introduction
Anonymity is among the essential properties of any cryptocurrency [38]. The most
successful cryptocurrencies today i.e., Bitcoin and Ethereum, are pseudonymous [27]:
clients are able to securely transact while using pseudonyms that cannot be trivially
mapped to their real-world identities. Cryptocurrencies operate using a peer-to-peer
(P2P) network of nodes. When a node performs a transaction, it sends the transaction
to its peers, which propagate it further. Consequently, an adversary that listens to all
exchanged messages can map each transaction to the IP address of the node that created
it, effectively deanonymizing that node.

Multiple attacks have exploited this transaction broadcasting mechanism to map
Bitcoin pseudonyms to their originating IP address [20,22,34,40]. To do so, they use
a “supernode”: a seemingly regular node that connects to all active Bitcoin nodes and
listens to the transactions they relay. 1 Yet, such attacks are highly noticeable [33], as
the “supernode” establishes 50− 117 new connections to every reachable Bitcoin client.
Moreover, such attacks can be mitigated by purely application-level countermeasures. For
instance, the diffusion broadcast mechanism mitigates the attacks presented in [20,34],
while Dandelion [23] and its improvements [28] reduce the effectiveness of the attack
presented in [22].

1 Similar techniques could be applied to Ethereum.
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In this work, we introduce PERIMETER: a stealthier, harder-to-mitigate, network-
level attack. PERIMETER relies on an attack vector that has been overlooked: leveraging
access to the Internet infrastructure. Connections of any cryptocurrency are inevitably
routed over the Internet, thus accessible to multiple Autonomous Systems (ASes) and
Internet Exchange Points (IXPs). As a result, a malicious AS or IXP that combines her
access to the Internet infrastructure with application-level knowledge can perform a
cross-layer deanonymization attack. Our routing analysis of the Bitcoin network reveals
that such attacks are practical in today’s Internet. Indeed, we found that at least 6 distinct
network adversaries can deanonymize more than 35% of the Bitcoin clients (see §5).
The PERIMETER attack is stealthier than previous attacks, as it is completely passive (no
need for new connections); and harder to mitigate, as the attacker’s power is dependent
on the Internet routing protocol (BGP) i.e., not on the application protocol.

PERIMETER is composed of two phases. In the first phase, the attacker eavesdrops
on the victim’s connections at the packet-level to collect information about the transac-
tions the victim propagates to its peers. In the second phase, the attacker analyzes this
information to distinguish the victim’s transactions.

The attacker eavesdrops on the victim’s connections by directly reading each packet’s
payload i.e., not by establishing connections. In effect, the attack is undetectable and
equally effective against nodes, which do not accept connections e.g., NATed notes.
Notably, unlike previous work on network-level attacks [48,17], which require the
attacker to control all connections of a victim, PERIMETER works with just a fraction. We
experimentally show that an adversary intercepting only 25% of the victim’s connections
can deanonymize it with 70% accuracy (see § 6).

The adversary distinguishes the victim’s transactions using anomaly detection (Isola-
tion Forest [35]). The victim’s transactions appear as anomalies as they have a distinct
propagation pattern. For example, in Bitcoin, the victim will send a transaction that
it generated to an unusually high portion of its peers compared to other transactions.
Unlike previous work on deanonymizing Bitcoin clients that rely solely on the time
difference between announcements of the same transaction across nodes [20,22,33,34],
PERIMETER is agnostic to it. As a result, PERIMETER is not sensitive to broadcast
protocol changes e.g., diffusion, trickle, etc. Instead, PERIMETER leverages the victim’s
interactions with its peers to infer whether the victim knew a transaction before its peers.

PERIMETER generalizes to encrypted cryptocurrencies. Taking the popular Ethereum
as an example, we observe that an AS or IXP-level adversary is a practical threat for two
main reasons. First, similarly to the Bitcoin network, the Ethereum network is affected by
the centralization of the Internet traffic. Indeed, we observe that for the majority of clients
there are 4 distinct adversaries intercepting 30% of their connections (see §5). Second, a
network adversary can infer the victim’s peers by eavesdropping on the IP packets, as
their header is inevitably unencrypted. This combined with the lack of randomness in
broadcasting transactions (e.g., diffusion), makes traditional attacks (solved in Bitcoin)
such as Koshy et al. [34] effective.
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To summarize, we make the following key contributions:

– A novel attack vector against anonymity that is effective against Bitcoin (§ 3,§ 4)
and generalizes to encrypted cryptocurrencies.

– A thorough analysis of the Bitcoin and Ethereum networks from the routing perspec-
tive using real-world control-plane data. Our analysis demonstrates the feasibility of
such an attack in today’s Internet (§5).

– An evaluation of PERIMETER’s practicality using both realistic simulations and
“in-the-wild” experiments against Bitcoin clients (§6).

– A comprehensive set of deployable countermeasures (§7).

2 Background

In this section, we briefly describe Bitcoin, Ethereum, and Internet routing.

2.1 Bitcoin workings

Bitcoin is a currency that does not rely on any central authority or trusted party. Instead,
Bitcoin relies on a peer-to-peer (P2P) network in which nodes use a consensus mecha-
nism to jointly agree on an append-only log of all the transactions that ever happened, the
blockchain. Bitcoin users are associated with one or multiple cryptographic pseudonyms,
which cannot be trivially mapped to the user’s real-world identities. Thus, we say that Bit-
coin is pseudonymous. Attempts to map pseudonyms to real-world identities constitute
deanonymization attacks.

To transfer funds among each other, Bitcoin clients issue transactions in which they
declare the transfer of a certain amount of Bitcoin from their Bitcoin pseudonym to
one (or multiple) others. Transactions need to be propagated in the network, verified by
all nodes, and eventually added to the blockchain. Upon receiving a new transaction,
a Bitcoin client advertises it to its peers using an “inv” message that includes the hash
of the transaction. The peers which are unaware of an advertised transaction request it
by replying to the advertisement with a “getdata” message that includes the hash of the
transaction. Finally, a Bitcoin client sends the transaction to those peers that request it
with a “tx” message.

The Bitcoin Core has included two modifications that affect the way transactions
are propagated.2 First, a client advertises transactions with independent, exponential
delays to its peers. This broadcast mechanism is called diffusion and was introduced as
a countermeasure against deanonymization attacks. Second, the diffusion delay that a
client adds before an advertisement to a given peer differs depending on which initiated
the connection between them. Particularly, a Bitcoin node halves the delay for peers to
which it initialized the connection as these are less of a privacy concern [3].

2 We mention the modifications that are relevant to our work.
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2.2 Ethereum workings
Ethereum supports decentralized applications that are backed by smart contracts: proto-
cols or small pieces of software running on top of the Ethereum network and performing
irreversible transactions with no third-party intervention. In the context of Ethereum, a
transaction is a data structure describing the exchange of Ether signed with the private
key corresponding to a users’ pseudonym. Similar to Bitcoin, Ethereum relies on a P2P
network of nodes and is pseudonymous. In contrast to Bitcoin, though, all Ethereum
communications are encrypted [11]. Thus, an on-path eavesdropper cannot read the
exchanged messages.

The Ethereum protocol also differs from the Bitcoin protocol in the way transactions
are broadcasted. Ethereum broadcasts newly learned transactions without delay across
transmissions. It also makes use of an advertisement system, but only for a subset of its
neighbor peers. In particular, consider an Ethereum (Geth [6]) node with n peers, each
time it learns a new transaction, the node broadcasts it to b

√
nc of its peers and then it

advertises it to the remaining n− b
√
nc peers, excluding those which is already aware

of it.

2.3 Internet routing
The Internet is composed of smaller networks called Autonomous Systems (AS). Each
AS contains multiple hosts that are addressed with a unique IP. ASes build physical
connections to each other to exchange traffic under certain economic agreements. Often-
times, ASes also participate in Internet eXchange Points (IXPs). In this case, multiple
ASes connect to a single physical location and exchange traffic. BGP[9] is the routing
protocol that regulates how IP packets are forwarded in the Internet. Particularly, BGP
computes the unidirectional AS-paths along which traffic from each host will reach its
destination. ASes and IXPs in this AS-path forward traffic, and thus they can eavesdrop,
drop, or delay it.

3 Overview
In this section, we give an overview of the PERIMETER attack before we elaborate
on its workings in §4. In particular, we first describe the attacker’s goal, profile, and
procedure (§3.1). Next, we illustrate the PERIMETER attack against a Bitcoin client with
an example (§3.2). Finally, we describe how the attack generalizes to Ethereum (§3.3).

3.1 PERIMETER at a high-level

Attacker’s goal The attacker’s goal is to deanonymize a specific node, meaning to map
the IP of a victim node to the transaction(s) it created.3 Concretely, the attacker’s goal
is to compute a set of transactions that contains (most of) the victim’s transaction(s)
(i.e., maximize true positives) and as few as possible transactions created by other
nodes (i.e., minimize false positives). We refer to this set of transactions as the victim’s
anonymity set.

3 Such an attack is very harmful to the victim because an attacker can often link all other
transactions the victim made to the deanonymized one [39]
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Fig. 1: (a) From the networking viewpoint, the attacker (AS2) naturally i.e., according to BGP,
intercepts some of the victim’s connections. (b) From the application viewpoint, the attacker
(partially) surrounds the victim without establishing any new connection. Surrounding the victim
allows the attacker (AS2) to read the unencrypted Bitcoin messages the victim node A sends and
receives.

Attacker’s profile The attacker is an Autonomous System (AS) or Internet eXchange
Point (IXP) that naturally (i.e., according to BGP’s calculations) intercepts any direction
of X% of the victim’s connections and knows the victim’s IP.4 Due to the centralization
of the Internet traffic, multiple ASes and IXPs intercept a large portion of a host’s
connections even if they are not their direct provider, as we show in §5.
Attack procedure The attack consists of eavesdropping on the victim’s connections
and analyzing collected data to distinguish the victim’s transaction(s). Concretely, the
adversary first leverages her position in the Internet to gain visibility over the transactions
that the victim propagates. We refer to this process as surrounding since the adversary
creates a logical circle around the victim across which she can observe the incoming and
outgoing information. Notably, the adversary surrounds the victim in a purely passive
and undetectable manner, as she only observes traffic that she anyway forwards. Next, the
adversary computes statistics on the transactions the victim advertises and uses anomaly
detection to find the victim’s transactions. Useful statistics include the number of times
the victim or its peers sent or received a transaction.

3.2 PERIMETER in action

An example scenario Fig. 1a illustrates how an attacker running PERIMETER can
deanonymize Bitcoin transactions. This network is composed of seven ASes (AS0
- AS6), some of which host Bitcoin clients (nodes A-G). Traffic between each pair
of nodes is forwarded following the AS-path that BGP calculates. As a result, AS2
intercepts the connections between node A and nodes B, C, D and E. Assume that AS2
is malicious and aims at deanonymizing Alice’s transactions. AS2 knows the IP of the
node on which Alice runs her Bitcoin wallet, namely the IP of node A. Thus, AS2 aims
at mapping node A to the transaction(s) it generates, TX#33 in this example.

4 Finding the IP of a person is practical as it is revealed every time this person visits a website or
an application e.g., skype call.
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Fig. 2: To deanonymize Alice’s transaction in Ethereum, the attacker (AS2) connects to some
of the victim’s peers. AS2 infers some of the victim’s peers’ IPs by eavesdropping on the vic-
tim’s connections. (b) In effect, the attacker indirectly surrounds the victim from the application
viewpoint.

PERIMETER attack on Bitcoin AS2 eavesdrops on the victim’s connections that she
naturally intercepts and creates the initial anonymity set from the transactions that node
A propagates i.e., TX #15, TX #11, TX #35, and TX #33. From the application
viewpoint, AS2 has passively formed a (partial) logical circle around the victim, as
illustrated in Fig. 1b. Next, AS2 tries to reduce the size of the anonymity set by removing
transactions that are most likely not generated by the victim. AS2 knows that a Bitcoin
node only receives transactions it requests and only requests transactions it does not
know already. Thus, AS2 excludes TX #35 from the anonymity set as AS2 has observed
node A receiving TX #35 from node C. AS2 cannot use the same technique for TX
#15 and TX #11 because AS2 does not intercept the victim’s connections to the nodes
from which it received these transactions, i.e., nodes F and G. Instead, AS2 uses anomaly
detection to find the victim’s transaction, which appears as an anomaly with respect
to its propagation pattern. For instance, the number of peers that requested TX #33
from node A is higher for TX #33 than for any other transaction. We elaborate on the
anomaly detection procedure and the features used in §4.

3.3 Generalizing PERIMETER to Ethereum

Fig. 2a illustrates the same attack scenario as before but with nodes A-G belonging to the
Ethereum network. We now explain how AS2 could use PERIMETER to deanonymize
node A in this case. Unlike Bitcoin, Ethereum connections are encrypted, meaning that
AS2 cannot directly read the content of the messages the victim exchanges with its
peers. To deanonymize an Ethereum client, AS2 uses the observation made by Koshy et
al. [34] according to which a node can be uniquely identified in a single session by its
directly connected neighboring nodes. Unlike in the attack presented by Koshy et al. [34]
that used a Bitcoin-specific flaw to infer connections, in PERIMETER, the attacker can
infer the IP addresses of the victim’s peers by reading the unencrypted headers of the
packets the victim node A inevitably sends and receives. After connecting to some of the
victim’s peers5, distinguishing the victim’s transactions (across those its peers propagate)

5 Ethereum facilitates connecting to a client using its IP (i.e., discovery v4 UDP packet).
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is strictly more straightforward than for Bitcoin. That is the case as most Ethereum nodes
(geth version [6]) advertise the new transactions immediately to their peers. From the
application viewpoint, the adversary has again partially surrounded the victim, as seen
in Fig. 2b.

4 PERIMETER workings

Having described the PERIMETER attack at the high-level in §3, we now elaborate on
PERIMETER’s technical details. Concretely, we describe how the attacker (i) distinguishes
Bitcoin traffic (§4.1); (ii) retrieves propagated transactions (§4.2); and (iii) uses anomaly
detection (Isolation Forest) to find the victim’s transaction(s) (§4.3). Finally, we discuss
the features the attacker uses (§4.4).

4.1 Recognizing Bitcoin traffic

The adversary surrounds the victim node and reads the data exchanged in the Bitcoin
connections to create the initial anonymity set. To do so, the adversary first needs to
distinguish Bitcoin traffic across all the connections she intercepts. The adversary can
easily distinguish Bitcoin traffic since most clients use a particular TCP port, i.e., 8333.
Notably, the adversary can recognize the Bitcoin connections, even between clients
using another TCP port. To do so, the adversary can search on the packet payload to
find known Bitcoin message types, e.g., “inv” or “getdata”. Indeed, the adversary can
perform string searching at line-rate even in commodity hardware [32]. Importantly, the
adversary performs string search on a single packet per connection. Once she finds a
Bitcoin message in a packet of a connection, she can use a filter that matches on the
4-tuple of the TCP connection (i.e., IP addresses and TCP ports) to distinguish it.

4.2 Creating the initial anonymity set

To create the initial anonymity set, the attacker needs to distinguish all transactions that
the victim itself or its peers have advertised. This is challenging as Bitcoin messages
can be split among multiple packets, and those packets can be re-ordered, lost, and
re-transmitted while being transferred in the Internet. As a result, concatenating each
Bitcoin connection’s payloads (packet stream) would not result in the complete list of
messages that the corresponding clients exchanged (message stream). To reconstruct
the message stream, the adversary can use tools such as GoPacket [7] that leverage the
sequence number contained in the TCP header.

Next, the adversary includes in the anonymity set the hashes of the transactions
that are included in three types of messages, namely “inv”, “getdata”, and “tx”. Finally,
the adversary calculates statistics per transaction hash. Particularly, she calculates the
number of “inv”, “getdata”, and “tx” that are sent and received per transaction.
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4.3 Analyzing data

Having collected the initial anonymity set, the adversary needs to reduce it to the
transactions that the victim created. Doing so is challenging for two reasons. First,
the number of transactions the victim propagates is orders of magnitude higher than
those that it creates. Second, the adversary does not have ground truth to train on
(e.g., transactions that the victim created).

To address these challenges, the adversary formulates the problem to an unsupervised
anomaly detection problem, meaning a problem that requires identifying data points
that differ from the norm (i.e., anomalies) in an unlabeled dataset. Doing so allows the
attacker to train directly on the traffic she observes, leveraging the fact that the victim’s
transactions are a tiny minority compared to all transactions the victim propagates. As a
result, the attacker can learn the most common propagation pattern and distinguish the
victim’s transactions as anomalies. Indeed, the victim’s transactions will exhibit different
propagation patterns, e.g., the victim will propagate the transaction it generates to more
peers compared to other transactions.

The attacker uses an Isolation Forest (IF) ([35],[36]) to solve this unsupervised
anomaly detection problem since IF is more efficient, expressive, and interpretable
than clustering-based approaches or neural networks. Concretely, IF is more efficient,
especially with high-dimensional data, than distance-based methods, including classical
nearest-neighbor and clustering-based approaches. This is because IF is a tree-based
machine learning algorithm that directly identifies anomalies by isolating outliers in the
data rather than first defining the normal behavior and calculating point-based distances.
Finally, in contrast to neural network methods, such as autoencoders, IF is easy to
interpret, and it is not too sensitive to parameter tuning. IF achieves this by building an
ensemble of decision trees to partition the data points. To create these trees, IF recursively
generates partitions by randomly selecting a feature and then selecting a random split
value between the minimum and the maximum value of the selected feature. The number
of required random splits to isolate a sample averaged over a forest of such random trees
determines the normality of a sample. IF leverages the observation that anomalies are
more natural to isolate, and thus they need fewer splits on average than normal data
points.

4.4 Feature selection

We started our feature investigation with a pool of features, including some timing-
related and some interaction-related (i.e., related to the interaction between the victim
and its peers). Using cross-validation in our simulation runs (see § 6.1), we selected
three interaction-related features: (i) number of “getdata” messages; (ii) number of “tx”
messages; and (iii) the portion of clients which requested a transaction. Next, we describe
the features in detail and explain why they allow the victim’s transaction(s) to stand out
as anomalies.
The number of “getdata” messages that the victim received per transaction: This is
equivalent to the number of times the victim sent a transaction. Thus, the adversary
can capture this feature independently of the direction of the victim’s connections she
intercepts. A Bitcoin client will only send a “getdata” for an advertised transaction if
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it has not received this transaction before. Thus, the victim is expected to receive more
“getdata” for a transaction it created, as its peers are unlikely to have received it from
others.
The number of “tx” messages the victim received per transaction: If the victim received
a transaction from one of its peers, then the victim could not have created it. That is
because, in order for the victim to receive a transaction, it should have requested this
transaction from its peer, and thus, it should not have known this transaction beforehand.
The number of “tx” the victim received for a transaction is equivalent to the number of
“getdata” the victim sent. In effect, an AS-level (or IXP-level) adversary would be able
to calculate this feature independently of the direction of traffic she intercepts, namely to
or from the victim node.
The portion of clients that requested a transaction from the victim across those the
victim advertised this transaction to: This feature is similar to the number of “getdata”
with one critical difference. It considers that because of diffusion, the victim might delay
advertising its transaction to some of the peers so much that they learn it from elsewhere.
The victim’s transaction will have a high request/advertisement ratio because the victim
knows about the transaction much earlier than its peers.

5 PERIMETER’s practicality

As we described in §3, an effective PERIMETER attacker needs to naturally intercept
some of the victim’s connections. In this section, we show that this attacker model is
practical, taking into consideration both real-world Internet routing and the two biggest
cryptocurrency peer-to-peer networks, namely the Bitcoin and the Ethereum networks.
To that end, we first investigate how likely it is for a given cryptocurrency client to be
vulnerable to PERIMETER. We found that for 50% of the Bitcoin (60% of the Ethereum)
clients, there are at least four distinct network adversaries that can intercept 30% of
their connection. Second, we investigate how likely it is for a random transaction to be
deanonymized. We found that only five network adversaries (if they were colluding)
would be able to deanonymize the majority of transactions created in Bitcoin. We
describe our methodology in §5.1 before we summarize our results in §5.2.

5.1 Methodology

To realistically evaluate the practicality of the PERIMETER attack, we simulated BGP[9],
the default routing protocol in the Internet. Particularly, for each pair of ASes in the
Internet, we compute the BGP AS-path: the sequences of ASes and IXPs that can
intercept packets sent by clients hosted in this AS pair. We then calculated the ability
of various ASes and IXPs to perform various-powered PERIMETER attacks against the
Bitcoin and Ethereum clients. Notably, we augment the routing analysis of the Bitcoin
network presented in [17] by adding IXP links and by analyzing the Ethereum network.
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(a) For 35% of the Bitcoin clients, there are at least 5
distinct attackers that can intercept 30% of their connec-
tions.
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distinct attackers that can intercept 30% of their connec-
tions.

Fig. 3: Both Bitcoin and Ethereum are vulnerable to PERIMETER’s attacker model.

We used three datasets for our evaluation: (i) the IPs of the Ethereum and Bit-
coin clients; (ii) the BGP advertised routes; and (iii) the publicly-available economic
relationship among ASes and IXPs.
Ethereum & Bitcoin IPs to ASes We fetched the IPs of the Bitcoin and Ethereum from
publicly available data [12] [13]. We removed onion addresses as we could not assign
them to actual IPs. Next, we inferred the most-specific prefix and the AS hosting each
Bitcoin and Ethereum client. To that end, we processed almost a million BGP routes
(covering all Internet prefixes) advertised on BGP sessions maintained by 6 RIPE BGP
collectors [10] (rrc00- rrc05). We do the mapping by associating each prefix to the origin
AS advertising it.
AS-level topology and forwarding paths To infer an AS-level topology, we used the
economic relationships between ASes provided by CAIDA [25]. An AS-level topology
is a directed graph in which each node corresponds to an AS, and each link represents
an inter-domain connection between two neighboring ASes. Each link is also labeled
with the business relationship between the two ASes (customer, peer, or provider). We
augmented our AS-level topology with IXP links provided by CAIDA [26] following
the methodology in [15,37].

Our augmented AS-level topology is composed of ∼ 67K ASes, more than ∼ 700
IXPs, and∼ 4M links. Our datasets were collected in September 2019. We computed the
actual forwarding paths on our AS-level topology following the routing tree algorithm
described in [30].

5.2 Findings

Using the Internet topology described in §5.1, we calculated how vulnerable individual
clients are to PERIMETER and how likely it is for a transaction to be deanonymized.
The majority of Bitcoin clients are vulnerable to PERIMETER by multiple poten-
tial attackers. We calculated the number of distinct attackers able to intercept a fraction
of the potential victims’ connections. We summarize our results in Fig. 3a. The x-axis
corresponds to the number of distinct attackers that can perform a PERIMETER attack
against the portion of the Bitcoin clients shown in the y-axis. We consider four attack
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types depending on the fraction of the victim’s traffic that the attacker intercepts. Specifi-
cally, we consider attackers intercepting 30%, 50%, 70%, and 90%, which correspond to
different lines in the plots. As expected, all Bitcoin clients are vulnerable to PERIMETER
by their own provider, which intercepts > 90% of their connections. Interestingly though,
> 90% of all Bitcoin clients are also vulnerable to PERIMETER by at least one more
network adversary. Moreover, we observe that for 50% of the Bitcoin clients, there are
at least 4 attackers able to intercept 30% of their connections. This is worrying as such
adversaries can deanonymize Bitcoin clients with at least 70% accuracy, as we observe
from our experiments in the Bitcoin Mainnet (see §6). Worse yet, for 20% of the Bitcoin
clients, there are at least 4 potential attackers that can perform the PERIMETER attack
leveraging their access to 50% of the victims’ connections.
PERIMETER’s attacker model is practical in the Ethereum network. We plot the
same results for Ethereum in Fig. 3b. We observe that Ethereum is slightly more vul-
nerable than Bitcoin to a passive AS-level (or IXP-level) adversary. Particularly, we
observe that for most clients, there are four distinct network adversaries intercepting
30% of their connections. Observe that these adversaries can almost effortlessly infer
30% of the clients’ peers. This is worrying considering that geth [6], the most used
Ethereum version [12], does not implement diffusion or any other randomized broadcast
mechanism.
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Fig. 4: 5 network adversaries intercept 72% (80%) of all possible Bitcoin (Ethereum) connections.

Few well-established attackers can perform a network-wide deanonymization at-
tack. Fig. 4 illustrates the cumulative percentage of connections that can be intercepted
by an increasing number of ASes or IXPs (e.g., by colluding with each other). We
observe that only ten ASes/IXPs together intercept 90% of the Ethereum clients and
85% of the Bitcoin clients. If those ten network providers decided to collude, they would
be able to deanonymize 85% of all transactions in Bitcoin and able to infer at least
90% of the Ethereum peer-to-peer graph. This is especially alarming considering that
the attack is entirely passive; thus, there is no reputation risk involved in performing it.
As an intuition, the list of the most powerful attackers include ASes such as Amazon,
Alibaba, DigitalOcean, and OVHcloud but also large IXPs such as DataIX Novosibirsk,
the Amsterdam Internet Exchange, the Hong Kong Internet Exchange, and London
Internet Exchange.
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6 PERIMETER’s effectiveness

We evaluate the effectiveness of PERIMETER in simulation (§6.1) and in the wild (§6.2).
We found that an attacker intercepting 25% of the victim’s connections can deanonymize
a client with 70% accuracy in the Bitcoin Mainnet. Unsurprisingly, the PERIMETER
attack appears even more effective in simulation.

6.1 PERIMETER in simulation

We evaluated PERIMETER using a realistic simulation whose delays we have tuned based
on Internet-wide measurements. We elaborate on our methodology before we describe
our results.
Simulator We modeled the entire Bitcoin networks by extending the realistic event-
driven simulator used in [17]. We used the 0.19.1 version of the Bitcoin Core as a
reference for the behavior of the Bitcoin clients. Among other implementation details,
we simulated diffusion: the poisson delay that a node waits before advertising a new
transaction to each peer and the preference to outgoing connections in advertising and in
requesting transactions [3]. We simulated all nodes whose IPs were reachable, and we
could locate in the Internet as described in § 5.
Simulating Internet delays To realistically model Internet delays among clients in our
simulation, we leveraged the RIPE Atlas platform. RIPE Atlas [1] is a data collection
system composed of a global network of devices, called probes, that can actively perform
Internet measurements. In particular, to estimate the delay between each pair of Bitcoin
nodes, we measure the delay between probes in the ASes hosting these Bitcoin nodes.
Indeed, Internet delay between two particular hosts located in any AS-pair is represen-
tative of the delay between any pair of hosts in the same AS-pair. That is because the
Internet path between any pair of hosts in the same AS-pair is common. We performed
ping measurements for each pair of ASes say (ASA, ASB) in which there are at least two
Bitcoin clients (e.g., one Bitcoin client in ASA and one in ASB) and at least one RIPE
probe available (i.e., either in ASA or in ASB). If multiple probes existed in the same
AS, we used one for each prefix in which at least one client is hosted. We perform each
measurement at least three times and use the median delay. Our measurement campaign
lasted 7 hours and included ∼ 50K pings. We leveraged delay measurements available
from RIPE atlas [2] to add the delays of AS-pairs, which we could not measure ourselves.
Together these delay measurements cover 72% of the Bitcoin connections.

We configure the delay of each node pair in the simulation with a randomly-selected
value across the delays measured in the corresponding AS-pairs. We validated our
augmented simulator by ensuring that the median transaction propagation delay aligns
with the value reported in [14].
Procedure We simulated a total of 10000 transactions, among which 100 were created
by the victim client. We use 70% of all transactions for training and 30% for testing. For
feature selection, we use 5-fold cross-validation on the training set. We run the attack
assuming the adversary intercepts a fraction of the victim’s connection i.e., 25%, 50%,
75%, 100%.
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Results We summarize our results in Table 1. We observe that an attacker can always
(i.e., almost independently of the percentage of connections she intercepts) deanonymize
the victim with 100% true positive and low false-positive rate. This is expected because
the simulated environment is idealized. In particular, all clients run the same code, are
benign and are in the same condition concerning load. Such an environment creates a
straightforward case for anomaly detection.

Simulation 25% 50% 75% 100%

true positives 1 1 1 1

false positives 0.002% 0.002% 0.001% 0%

Table 1: In simulation, an adversary
deanonymizes the victim with 100% accu-
racy even when intercepting 25% of its con-
nections.

Mainnet 25% 50% 75% 100%

true positives 0.7 0.9 0.9 1

false positives 0.002% 0.003% 0.003% 0.0%

Table 2: In the wild, an adversary
deanonymizes the victim with 90% accuracy
when intercepting 50% of its connections.

6.2 PERIMETER in the wild

We evaluated PERIMETER on the actual Bitcoin network. We describe our methodology
before we describe our results.

Methodology For our in-the-wild experiment, we used as victim a Bitcoin node version
0.19.1 of the Bitcoin Core running. Since we only attack our own node, our experiment
is ethical: we did not disturb the normal operation of the Bitcoin network in any way. We
configured our victim to not listen for incoming connections but instead only connect to
a predefined set of peers randomly selected across those in [13].6 We capture a total of
∼ 30K of transactions, among which 10 transactions were created by our victim. As the
attack is completely passive, we use the same transactions to measure the effectiveness
of various powered adversaries. In particular, we run the attack assuming the adversary
intercepts a fraction of the victim’s connection i.e., 25%, 50%, 75%, 100%.

We split the resulting dataset into the training and testing sets. We used all the
victim’s transactions and 30% of the transactions from other clients as the testing set. We
included all of the victim’s transactions in the testing to have a more accurate estimate of
true positives. In any case, the victim’s transactions are too few to affect the training of
the model. We used the remaining 70% of transactions from other clients as the training
set. Finally, we used the features we selected in the simulation, and we describe them in
§4.4.

6 We do not allow incoming connections to prevent attacks from light clients during the experi-
ment.
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Results Table 2 summarizes our results. We observe that an adversary intercepting only
25% of the victim’s connections can deanonymize it with 70% true positives and only
0.002% false positives. Moreover, an adversary intercepting 50% of a client’s connections
(or more) can deanonymize the victim with 90% accuracy (or above). As a baseline,
consider that previous attacks using “supernodes” report accuracies of 11%-60% [20]
and 75% [22], thus lower than PERIMETER. This demonstrates the effectiveness of a
network-layer attacker exploiting her access over the Internet infrastructure.

7 Countermeasures

The PERIMETER attack poses a serious and practical threat to the anonymity properties
of Bitcoin, as shown in §5 and §6. We argue that such a threat should and can be avoided
for current and future cryptocurrencies by employing the following countermeasures.
Encrypting traffic One of the most critical enablers of the PERIMETER attack is that
traffic is routed over the Internet unencrypted. Undoubtedly, encrypting Bitcoin’s traffic
would make the currency more anonymous, from the PERIMETER’s perspective. Still,
encryption alone cannot adequately mitigate the threat of passive AS-level adversaries.
Observe that the PERIMETER attack generalizes to Ethereum, whose traffic is encrypted,
even though, in this case, the attacker also needs to establish new connections.
Using fake peers PERIMETER generalizes to encrypted cryptocurrencies (e.g., Ethereum)
because of the networking footprint of its clients. Particularly, a PERIMETER attacker can
infer a client’s peers by eavesdropping on this client’s connections. Inferring a client’s
peers is critical for its deanonymization [34]. To shield against this attack, a client
could establish connections to ‘fake” peers with which it does not interact in practice,
effectively deceiving a potential attacker into connecting to irrelevant clients. In doing
so, the client should not request or store any transaction from fake peers; neither should
it not advertise new transactions to them. In effect, the client obfuscates its footprint
from a networking attacker.
Obfuscating the client’s state One of the key features used to deanonymize Bitcoin
clients in the PERIMETER attack is whether the victim requested (or received) a particular
transaction from any of its observed peers. By requesting a transaction, the client reveals
to a networking attacker (or potentially malicious client) that they do not know about a
transaction and thus that they have not created it. As a result, the adversary can safely
exclude some transactions, effectively decreasing the initial anonymity set. This is also
true for the Ethereum geth client [6]. To avoid this, a client should also request the
transactions it creates from peers that advertise them. While by doing so, the client
increases its load without learning anything new, it also deprives potential attackers of
an extremely effective feature. Notably, obfuscating the transactions a client knows by
requesting them is aligned with obfuscating the transactions a light client is interested in
by requesting more transactions (i.e., using Bloom Filters in Bitcoin’s BIP37 [31]).
Routing-aware transactions’ requests Instead of requesting more transactions to ob-
fuscate its state, a client can achieve a similar effect by carefully selecting the peer
from which it requests an unknown transaction. Particularly, a client should request
transactions in a routing-aware manner, meaning avoid requesting multiple transactions
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from clients whose connections are intercepted by the same AS or IXP. In effect, an
adversary is unlikely to have an accurate view of which transactions the victim knew.
Routing-aware transactions’ advertisement While PERIMETER does not directly use
timing information, previous works [34,22,20] have shown the need for obfuscating the
first-ever propagation of a transaction from each node. In fact, this need has motivated
countermeasures, such as the adoption of diffusion in the Bitcoin Core and the creation
of Dandelion[28]. We argue that such improvements need to also account for AS-level
adversaries. Particularly in diffusion, one could increase the delay for clients whose path
contains a very common AS or IXP. Similarly, the first node to advertise a transaction in
the Dandelion protocol could be selected (in addition to the current criteria) such that
the created traffic does not often traverse the same AS or IXP.
Using Tor or VPN services The goal of the PERIMETER attacker is to link transactions
to IP addresses. Thus, if a client manages to obfuscate its IP address by using Tor or a
VPN service, it should be protected against some of the potential attackers. Unfortunately,
this statement is only partially true. Tor is anonymous by design but has performance
and security limitations, while a VPN is less anonymous but more robust. Regarding Tor,
a network adversary can easily prevent the client from using Tor either by exploiting
the Dos mechanism [21] or by merely dropping the corresponding traffic. Observe that
the latter is possible as the IPs of all Tor relays are publicly known, and the adversary
might intercept the corresponding connections. Even if the client manages to use Tor, it
would still be vulnerable to deanonymization by a network attacker that leverage timing
analysis [47]. On the contrary, using a VPN service would be an effective countermeasure
if the VPN provider is used by other Bitcoin users and/or the victim is not using the
same VPN provider for additional communication. Indeed, an attacker would still be
able to map the victim’s transactions to the VPN provider’s IP. Thus, it is critical that the
attacker cannot also trivially map the victim’s identity to the VPN provider’s IP.

8 Related Work

Deanonymizing cryptocurrency transactions Researchers have studied Bitcoin’s ano-
nymity properties from two angles: the blockchain analysis and the traffic analysis of
the P2P network. From the blockchain-analysis angle, several papers have shown that
linking transactions made by the same user relying on publicly available blockchain data
is possible [16,41,42,43,39] even across sessions. These works are orthogonal to ours.
From the traffic-analysis angle, several papers have shown that linking transactions to IPs
is possible by analyzing data collected from one or multiple “supernodes” [20,22,34,40],
which establish connections to all reachable clients. Unlike, PERIMETER such attacks are
visible as the attacker needs to maintain thousands of outbound connections. Moreover,
these attacks can be mitigated by existing techniques such as diffusion, increasing delay
to inbound connections [3], and Dandelion [23,28].
AS-level adversaries AS-level attacks can be active or passive [46]. In an active at-
tack, the adversary performs BGP hijacks. Active adversaries can partition the Bitcoin
network [17], deanonymize Tor [47], and compromise certificate authorities’ infrastruc-
ture [19]. While effective, active AS-level adversaries are highly visible. In a passive
attack, the adversary operates on traffic that she naturally intercepts. Passive adversaries
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can eclipse clients [48] and delay blocks [17]. PERIMETER is orthogonal to the above
works as it acts against anonymity while being completely invisible (passive attacker).
Measuring cryptocurrency networks Apostolaki et al. [17] presented the first analysis
of the Bitcoin network from the routing perspective. Our analysis augments this by
including IXPs in the AS-level topology and by analyzing the Ethereum network. Gencer
et al. [29] analyzed both Ethereum and Bitcoin from the bandwidth, availability, and
geographic distribution perspective but not from the routing perspective. Finally, Saad
et al. [45] presented a measurement analysis on the AS distribution, location, and
performance of Bitcoin clients, also not considering Internet routing.
Countermeasures To the best of our knowledge, none of the existing countermea-
sures against previous attacks protects against PERIMETER. Countermeasures against
deanonymization attacks such as Dandelion [23,28] do not prevent AS-level attacks
as the selection of the first peer who receives a new transaction is independent of the
AS-level topology. Relay networks such as Falcon [4], SABRE [18], and FIBRE [5] are
irrelevant to PERIMETER as they focus on block propagation. Mixing protocols [24,44]
allow users to obscure transaction history but cannot prevent a PERIMETER attacker
from mapping the IP of a node with a transaction that this node created. Finally, a recent
modification in Bitcoin Core [8] reduces the chances of a client to select peers from the
same AS by improving IP bucketing. While this might be effective against [48], it cannot
prevent PERIMETER. That is because this selection only affects outgoing connections,
and most importantly, it does not consider the AS-path.

9 Conclusion

This paper presented PERIMETER, the first passive network-level deanonymization
attack that is practical and effective against Bitcoin. We showed that PERIMETER is
stealthier than previous deanonymization attacks while achieving higher accuracy. We
revealed that Bitcoin and Ethereum are vulnerable to the PERIMETER’s attacker model
based on real-world data. While PERIMETER poses a severe threat to Bitcoin and similar
cryptocurrencies, we also explained a comprehensive list of deployable countermeasures.

This work was supported by a Swiss National Science Foundation Grant (“Data-
Driven Internet Routing”, #200021-175525).
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searching on pisa. In: Proceedings of the 2019 ACM Symposium on SDN Research. pp.
21–28 (2019)

33. Khalilov, M.C.K., Levi, A.: A survey on anonymity and privacy in bitcoin-like digital cash
systems. IEEE Communications Surveys & Tutorials 20(3), 2543–2585 (2018)

34. Koshy, P., Koshy, D., McDaniel, P.: An analysis of anonymity in bitcoin using p2p network
traffic. In: International Conference on Financial Cryptography and Data Security. pp. 469–
485. Springer (2014)

35. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International
Conference on Data Mining. pp. 413–422. IEEE (2008)

36. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detection. ACM Transactions on
Knowledge Discovery from Data (TKDD) 6(1), 1–39 (2012)

37. Luckie, M., Huffaker, B., Dhamdhere, A., Giotsas, V., Claffy, K.: As relationships, customer
cones, and validation. In: Proceedings of the 2013 conference on Internet measurement
conference. pp. 243–256 (2013)
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