
Towards Integrating Formal Methods
into ML-Based Systems for Networking

Fengchen Gong
Princeton University

Divya Raghunathan
Princeton University

Aarti Gupta
Princeton University

Maria Apostolaki
Princeton University

Abstract
Owing to its adaptability and scalability, Machine Learn-

ing (ML) has gained significant momentum in the networking
community. Yet, ML models can still produce outputs that
contradict knowledge, i.e., established networking rules and
principles. On the other hand, Formal Methods (FM) use rig-
orous mathematical reasoning based on knowledge, but suffer
from the lack of scalability. To capitalize on the complementary
strengths of both approaches, we advocate for the integration of
knowledge-based FM into ML-based systems for networking
problems. Through a case study, we demonstrate the benefits
and limitations of using ML models or FM alone. We find
that incorporating FM in the training and inference of an ML
model yields not only more reliable results but also better per-
formance in various downstream tasks. We hope that our paper
inspires a tighter integration of FM-based and ML-based ap-
proaches in networking, facilitating the development of more
robust and dependable systems.

CCS Concepts
• Networks → Network monitoring.

Keywords
Telemetry, Imputation, Formal Methods, Transformer
ACM Reference Format:
Fengchen Gong, Divya Raghunathan, Aarti Gupta, and Maria Apos-
tolaki. 2023. Towards Integrating Formal Methods into ML-Based
Systems for Networking . In The 22nd ACM Workshop on Hot Topics
in Networks (HotNets ’23), November 28–29, 2023, Cambridge, MA,
USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3626111.3628188

1 Introduction
Advances in Machine Learning (ML) have been disruptive

in multiple domains, spanning natural language processing,
computer vision, and recommendation systems. Networking
has also become a playground for ML, thanks to its multiple
intricate and largely unresolved problems, complex patterns,
and abundance of data. Consequently, ML-based algorithms

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components
of this work must be honored. For all other uses, contact the owner/author(s).
HotNets ’23, November 28–29, 2023, Cambridge, MA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0415-4/23/11.
https://doi.org/10.1145/3626111.3628188

have been proposed for handling a wide range of long-standing
networking challenges, including congestion control [19, 31],
anomaly detection [4, 49], synthetic data generation [41], and
performance forecasting [43].

While scalable, adaptable, and often more efficient than
traditional solutions, ML-based algorithms lack correctness
guarantees and are susceptible to overfitting patterns or set-
tings. Thus, ML models could produce results that contradict
domain knowledge, meaning that they are inferior to prim-
itive algorithms, defy physical laws, or contradict common
sense [1, 21]. For instance, in predicting delay, certain out-
comes are implausible, such as those exceeding the speed of
light. Similarly, in synthetic traffic-trace generation, the traffic
rate originating from a port could not surpass its capacity.

It is evident that knowledge represented as mathematical
equations, physical laws, probabilistic relationships, or logic
rules should be somehow incorporated into solutions. For-
mal Methods (FM) is, of course, the time-honored way of
leveraging knowledge in generating correct and sound re-
sults. As a result, FM has also seen significant success in
networking problems such as congestion control [9], config-
uration synthesis [20, 50], traffic engineering [27], and finding
bugs [32, 34, 37]. Unfortunately, FM-based networking solu-
tions have difficulty in scaling and in learning patterns.

To get the best of both worlds, this paper advocates for the
integration of FM into ML-based networking to enhance its
dependability. Doing so could foster more reliable models
with soundness guarantees, which could be trained with less
data, and generalize better. While FM has been proposed as
a mechanism to enhance confidence in trained models based
on Deep Reinforcement Learning (DRL) [21, 57] and domain
knowledge drives the selection of the model and/or the features
in ML-based networking [57, 58], we take one step further
and argue for knowledge-augmented training and inference.
In fact, knowledge-augmented models are already proposed
in physics and biology with Physics- [35] (or Biology- [38])
Informed Neural Networks.

To investigate the potential of the integration of FM into ML-
based networking, we focus on a problem of network telemetry,
but our methodology can translate to other networking prob-
lems. In particular, we impute fine-grained queue-length time
series in switches by jointly analyzing their coarse-grained
counterparts, together with other time series such as packet
and drop counts. This is a suitable use case. First, fine-grained
queue monitoring is crucial for multiple downstream tasks
such as anomaly detection, provisioning, and root-cause analy-
sis. Second, fine-grained queue monitoring is challenging due

https://doi.org/10.1145/3626111.3628188
https://doi.org/10.1145/3626111.3628188
https://doi.org/10.1145/3626111.3628188

HotNets ’23, November 28–29, 2023, Cambridge, MA, USA Gong et al.

to hardware limitations and scale [13, 24, 60]. Finally, queue
lengths are affected by traffic patterns and follow well-studied
principles.

At first glance, this problem could be solved by either ML
or FM. On the one hand, imputing time series can be seen as an
analogy to image superresolution (i.e., turning a low-resolution
image to a high-resolution one), which is often solved using
generative models in ML [18, 40, 53, 54, 59, 62]. However, we
find that using ML alone yields results that are often evidently
inaccurate, i.e., inconsistent with measurements or against
known principles, especially for uncommon incidents. On the
other hand, given a set of measurements (coarse-grained time
series), and a set of constraints connecting them to their fine-
grained counterparts and to each other, an FM model could, in
principle, compute a fine-grained time series. Unfortunately,
we find that such a solution is hard to scale, due to the large
search space.

While seemingly straightforward, combining FM and ML
for queue length imputation poses multiple challenges which
also generalize to other networking problems. First, there is
no standard way to incorporate domain knowledge into ML
models. Second, incorporating knowledge can significantly
increase the complexity of the learning process, which might
cause scalability issues for complex models. Third, designed
to learn from data, ML models cannot easily ingest traditional
knowledge such as rules and relationships.

To address these challenges, we start from a pure ML-based
approach and strategically incorporate some of the constraints
of our FM model in its training and inference. The ML-based
approach (a transformer) ingests multiple sampled (coarse-
grained) switch-level time series and outputs fine-grained
queue lengths. Specifically, we first select constraints that
can be directly evaluated on the transformer output. Doing so
maintains system scalability because the system does not need
to reason about detailed (per-packet) scenarios. Next, we trans-
form those constraints to a differentiable form such that they
can be incorporated into the loss function of the transformer.
Finally, we enforce the constraints that the transformer failed to
satisfy by correcting its output post-imputation. We show that
combining ML with FM effectively increases queue-length
monitoring granularity by 50x (from 50ms to 1ms) and yields
11-96% better results compared to ML alone.

We posit that knowledge-augmented ML-based models for
networking instigate a vibrant research trajectory. This trajec-
tory includes questions such as: Which networking problems
require both ML and FM to be solved? How do we represent
decades of accumulative knowledge on network calculus, net-
work tomography, and optimizations in an ML-friendly way?
How to use knowledge to fight the scarcity or bias of datasets?
How can we verify that an ML system has indeed learned
networking principles?

Real Qlen
Max Qlen
Periodic Qlen
Port Pkt Sent
Port Pkt Drop

Figure 1: Sampling the queue length hides significant insights.
The various coarse-grained time series are correlated e.g., drop
increases with queue length.

2 Case study
To demonstrate the potential of the integration of ML-based

networking with FM, we consider the task of fine-grained mon-
itoring of queue lengths in network switches. Queue monitor-
ing is a particularly useful but challenging task. Queue lengths
affect latency guarantees [63] and expensive on-chip buffer pro-
visioning [56]. However, queue lengths can change at the mi-
crosecond granularity making queueing the most unpredictable
part of a packet’s journey [44] and monitoring them particularly
hard [13]. Instead of investigating hardware upgrades and/or
telemetry operators, we work on a purely software approach.
Concretely, we seek to use existing coarse-grained time series
of various signals to impute fine-grained queue lengths.
2.1 Example Scenario

Consider an operator of a large datacenter who has to run
a set of downstream tasks, e.g., deciding how much on-chip
buffer to provision to network switches, or detecting adversar-
ial traffic patterns. To inform these tasks, ideally, the operator
needs to have fine-grained (say microsecond level) measure-
ments of queue length of each switch over time. Indeed, lon-
gitudinal analyses of fine-grained queue length measurements
will give the operator an idea of the common burst sizes and
frequencies to inform the trade-off between accommodating
bursts and reducing switch cost [55].

Let us assume, without loss of generality, that the datacen-
ter has output-queued switches with 𝑁 ports, each with two
queues and a shared buffer across all queues, as shown in Fig. 2.
In an ideal case, the operator would collect fine-grained time
series of the length for each queue,𝑄 = {𝑄1,...𝑄2𝑁 } and use that
for the downstream tasks. In practice, the operator has access
to monitoring only at a much coarser granularity, say, every
50ms. Consider, for instance, that the operator can use (i) pe-
riodic sampling of each queue, which provides instantaneous
queue lengths; (ii) LANZ [8], which provides the per-queue
maximum length within each interval1, but does not specify
exactly when the maximum occurred; and (iii) SNMP [22],

1In practice, LANZ will only monitor a queue after its length exceeds
a configurable threshold, but for simplicity, we assume that the operator
configured this low enough s.t. LANZ reports some value for each interval
unless the queue is constantly zero.

Integrating Formal Methods into ML Systems HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

which provides per-port counts of packets sent, and dropped
every interval. As an illustration, Fig. 1 shows a queue length
time series at fine granularity (continuous line) and the mea-
surements available to the operator (dots). Arguably, sampling
hides critical details.
Insights: While each routinely collected coarse-grained time
series (i.e., queue lengths, packet counts, and drops) alone
hides important incidents, we posit that we can discover more
about the network by analyzing them together. In fact, all these
series follow the operating principles of a switch and are af-
fected by common traffic, thus are correlated. First, as the
buffer is shared across multiple queues, their lengths are cor-
related: a longer queue prevents other queues from growing by
taking up space in the buffer [2, 3, 6, 14]. Second, loss rate and
queue lengths are correlated: loss only occurs when queues are
longer than a threshold. Finally, queue lengths are correlated
with the incoming packet rate: a queue only forms in a many-to-
one (fan-in) scenario, i.e., when the service rate is lower than
the incoming rate. As shown in Fig. 1, an increase in the queue
length is accompanied by an increase in the coarse-grained
packets sent and dropped in the same interval.

These insights beg the question: Can we use the avail-
able coarse-grained monitoring to impute fine-grained queue
lengths? One strategy is to train an ML model (e.g., a trans-
former) to predict fine-grained queue lengths given the coarse-
grained time series (§2.2). Another strategy is to model a switch
using Satisfiability Modulo Theory (SMT) [10] constraints and
use an SMT solver [15] to find fine-grained queue lengths con-
sistent with the measurements (§2.3).
2.2 Telemetry Imputation with ML

Next, we explain why using ML is a natural choice and what
challenges we encountered in the process.
Why ML is a good idea: ML techniques are good at handling
complex and non-linear relationships between variables by
learning directly from data. This allows us to leverage correla-
tions that are too complex to model or for which we do not have
perfect knowledge. For example, for predicting queue length,
one would need to model congestion control, dynamic buffer
sharing, scheduling, and even traffic patterns and demands.
Moreover, ML is scalable: models can be parallelized in the
training and inference phases.

We find transformers to be particularly suitable models for
telemetry imputation. A transformer is a sequence-to-sequence
model that is able to learn correlations over a long sequence in
parallel based on the attention mechanism [52]. Its flexibility
and efficiency have already made it popular in the networking
context [16, 29, 39, 58].
Why ML is not a good idea: The most significant downside of
using ML for telemetry imputation is that the output evidently
lacks correctness. As an illustration, Fig. 4b shows the output of
a transformer we trained to impute queue lengths from coarse-
grained time series (§4 provides details for the model and data
generation). We observe that the imputed time series (blue
line) is not consistent with the measurements. For example, the

𝑠𝑒𝑛𝑡!,#

𝑠𝑒𝑛𝑡$,#

𝑠𝑒𝑛𝑡%,#

𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑!,#

𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑$,#

𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑%,#

𝑝𝑘𝑡_𝑑𝑠𝑡!,#

𝑝𝑘𝑡_𝑑𝑠𝑡$,#

𝑝𝑘𝑡_𝑑𝑠𝑡%,#

𝑑𝑟𝑜𝑝𝑝𝑒𝑑!,#

𝑑𝑟𝑜𝑝𝑝𝑒𝑑$,#

𝑑𝑟𝑜𝑝𝑝𝑒𝑑%,#

𝑝𝑘𝑡𝑠&!,#

𝑙𝑒𝑛&',#𝑡ℎ𝑟&',#

Input Ports Output Ports

Output Queues

𝑞𝑆𝑒𝑙$,#

𝑞𝑆𝑒𝑙!,#

𝑞𝑆𝑒𝑙%,#

𝑑𝑟𝑜𝑝&!,#

Figure 2: Schematic diagram of an output-queued switch. The
annotations refer to variables in our FM model (§2.3).

transformer did not impute a queue length that is as high as the
(known) max queue length (red dot) of the interval between
50-100ms, although it was part of the transformer’s input. It
may seem surprising that the model does not "realize" the
connection between the provided max queue lengths and the
ground-truth (fine-grained) queue lengths. However, this issue
arises due to the inherent challenge of predicting large values
when the input data is predominately skewed towards smaller
values. To make matters worse, we found that our model also
violated switch-specific constraints. For example, the total
number of packets that would need to have been dequeued for
the imputed queue to be formed exceeded the SNMP count.

2.3 Telemetry Imputation with FM
The inability of our ML model to produce a fine-grained

time series consistent with our knowledge, i.e., the coarse-
grained measurements and domain-specific rules, motivates
the use of FM for telemetry imputation.
Why formal methods is a good idea: FM allows us to express
our knowledge about how the switch operates and use auto-
mated reasoning to find a scenario that fits the coarse-grained
observations. Importantly, FM provides a guarantee that a re-
sult is plausible, i.e., could have occurred in a switch given the
observed measurements and domain-specific constraints.

Inspired by prior work [7] on using FM to analyze perfor-
mance in switches, we use Satisfiability Modulo Theories
(SMT) constraints to model switch behavior at the level of a
single packet. We divide time into discrete time steps, where
a time step is the time taken to transmit or receive a packet. We
then use Z3 [15] to find a solution to the system of constraints,
which corresponds to a time series of queue lengths.

At a high level, we model two types of constraints: (i) oper-
ational, and (ii) measurement. The former describes the way a
switch works. The latter incorporates the measurements, effec-
tively demanding that the result of utilizing monitoring tools
(e.g., max queue length, packet counts) on the fine-grained time
series would result in the coarse-grained measurements. Due
to space limitations, we have omitted the formal equations.

Operational constraints. Every packet that arrives at the
switch is mapped to some output queue, and a packet is de-
queued if the scheduler selects some queue. If the queue was
unbounded, the number of packets in the queue at time step 𝑡 ,

HotNets ’23, November 28–29, 2023, Cambridge, MA, USA Gong et al.

Q
le

n

Time (ms)

Q
le

n

Time (ms)

Sp
l Q

le
n

M
ax

 Q
le

n

D
ro

ps

Pk
ts

Time (ms)

Sp
l Q

le
n

M
ax

 Q
le

n

D
ro

ps

Pk
ts

Time (ms)

Q
Le

n

D
ro

ps

Pk
ts

Time (ms)

Q
Le

n

D
ro

ps

Pk
ts

Time (ms)16

Transformer
Constraints
Enforcement
Module

Tr: Fine-grained Time Series Ts: Coarse-grained Time Series
4x6

16x300

1x300

Knowledge

16

3x300

16

Periodic

Monitoring
Tools Knowledge

Augmented
Loss

<

c
r

Q
Le

n

D
ro

ps

Pk
ts

Time (ms)

Sp
l Q

le
n

M
ax

 Q
le

n

D
ro

ps

Pk
ts

Time (ms)

Q
le

n

Time (ms)

<

rQ : Imputed Time Series Q : Corrected Time Series

Max

Sum

Sum

Figure 3: Queue lengths (highlighted) are sampled together with other time series by generic monitoring tools and input in the
transformer which outputs fine-grained queue length time series. Knowledge (in the form of constraints) is used in the loss function
during training (KAL) and on top of its output during inference (CEM).

𝑝𝑘𝑡𝑠∞𝑞,𝑡 , is the sum of the queue length at 𝑡−1 and the number
of packets received at 𝑡 . In practice, the queue is bounded, thus
if 𝑝𝑘𝑡𝑠∞𝑞,𝑡 exceeds a dynamically calculated threshold (𝑡ℎ𝑟𝑞,𝑡),
the excess packets are dropped; the remaining packets are en-
queued (𝑝𝑘𝑡𝑠𝑞,𝑡). The queue length at 𝑡 is 𝑝𝑘𝑡𝑠𝑞,𝑡 minus 1 if a
packet is dequeued. Additional constraints over the selected
queue and dynamic threshold model the scheduling and buffer
management algorithms, respectively.

Measurement constraints. The number of packets received,
sent, and dropped at each port must equal the counts reported
by SNMP. The maximum queue length during the monitor-
ing interval must equal the maximum as reported by LANZ
(𝑚_𝑚𝑎𝑥𝑞). If the queue length is sampled at time steps𝑇𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ,
the imputed queue length must match the sampled queue length
(𝑚_𝑙𝑒𝑛𝑞,𝑡).
Why formal methods alone is not a good idea. Although
our FM approach guarantees the imputed result is plausible,
its scalability is limited. Z3 successfully generated imputed
queue lengths for simple scenarios in a few minutes, but could
not handle more realistic scenarios in even 24 hours. Due to the
high port bandwidth, there are ≈90 time steps in 1ms, leading
to a large search space of traffic scenarios which makes the
problem intractable for the solver. For instance, if two packets
are enqueued sequentially on an empty queue, different inter-
arrival gaps are considered, though they have the same effect
on the queue length.2

3 Combining ML and FM
Driven by our previous observations demonstrating the com-

plementary nature of FM and ML, we design a synergistic
approach shown end-to-end in Fig. 3. The raw (fine-grained)
time series 𝑇𝑟 are sampled to 𝑇𝑠 (e.g., by generic monitor-
ing tools) and fed to a transformer which is trained using a
Knowledge-Augmented Loss (KAL) function. During infer-
ence, a Constraint Enforcement Module (CEM) corrects the
transformer’s output (�̂�𝑟) by minimally changing it until it sat-
isfies certain constraints producing �̂�𝑐

𝑟 . Note that an operator
2This example scenario is on-purpose simplified, there are other cases

that cannot be easily distinguished or pruned.

would only have𝑇𝑠 available to infer �̂�𝑐
𝑟 . For training, she can

use a simulation or a short real trace to generate𝑇𝑟 .
Exact modeling as defined by the operational and measure-

ment constraints is too expensive, as we discussed in §2.3.
We navigate the trade-off between accuracy and scalability by
reducing our system of constraints to three that we can directly
test against the transformer-imputed queue lengths.

The first two constraints are related to measurements, par-
ticularly max and periodic sampling of queues:

max
0≤𝑡<𝑇

�̂�𝑟 [𝑞] [𝑡]=𝑚_𝑚𝑎𝑥𝑞 (C1)

∀𝑡 ∈𝑇𝑠𝑎𝑚𝑝𝑙𝑒𝑠 . �̂�𝑟 [𝑞] [𝑡]=𝑚_𝑙𝑒𝑛𝑞,𝑡 (C2)

where �̂�𝑟 [𝑞] [𝑡] denotes the length of queue 𝑞 at the 𝑡𝑡ℎ ms.
Finally, we observe that if some queue in port 𝑖 is nonempty

for 𝑁𝐸𝑖 time steps, then 𝑁𝐸𝑖 packets will be dequeued, as
schedulers are typically work-conserving. An empty queue
can send a packet if one arrives; hence 𝑁𝐸𝑖 is a lower bound
on the number of packets sent,𝑚_𝑜𝑢𝑡𝑖 :

𝑁𝐸𝑖 ≤𝑚_𝑜𝑢𝑡𝑖 (C3)

where𝑁𝐸𝑖 =

𝑇−1∑︁
𝑡=0

𝑖𝑡𝑒 (
∨

𝑞∈𝑄𝑢𝑒𝑢𝑒𝑠𝑖

�̂�𝑟 [𝑞] [𝑡] >0, 1, 0)

𝑖𝑡𝑒 (𝑐,𝑣1,𝑣2) means if 𝑐 is true, then return 𝑣1, else return 𝑣2.
The resulting set defines an over-approximation of the switch

behavior: every plausible imputed result satisfies these con-
straints, but not every imputed result consistent with them is
plausible. We integrate these constraints on the transformer’s
training and inference. For the training, we modify the loss
function, effectively teaching the transformer to obey domain
knowledge (§3.1). For the inference, we correct the trans-
former’s output to be consistent with the constraints (§3.2).
3.1 Knowledge Augmented Loss (KAL)

Our transformer (§2.2) is trained with EMD (Earth Mover’s
Distance) [47] which allows it to learn queue-length distribu-
tions but not to satisfy known constraints. Thus, we augment
the loss function to incorporate certain constraints. Besides

Integrating Formal Methods into ML Systems HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

(a) IterativeImputer [48] (b) Transformer-only (c) Transformer + KAL

Imputed data

Ground-truth data
Max per 50ms

Periodic sampling

(d) Transformer + KAL + CEM

Figure 4: Visualizations of imputing the same queue-length incident (described in §4) with various methods: (a) simply connects
maximum and periodic queue-length samples; (b) catches trends but outputs results inconsistent with maximum and periodic samples;
(c) approaches consistency (e.g., queue length approaches known max) (d) consistent and accurate results.

EMD(𝑇𝑟 ,𝑄𝑟), the transformer aims at satisfying both the equal-
ity constraints (C1, C2), and the inequality constraint (C3),
presented by differentiable functions Φ(𝑇𝑠 , 𝑄𝑟) and Ψ(𝑇𝑠 , 𝑄𝑟),
respectively. To turn (C3) (which is non-differentiable as it
involves an 𝑖𝑡𝑒) into the differentialΨ, we (i) apply a Tanh func-
tion to each scaled queue length, resulting in 1 when the length
is greater than 0, and 0 otherwise; and (ii) sum the results across
all queues in the port to model the disjunction. The loss func-
tion is thus turned into a constrained optimization problem:

min EMD(𝑇𝑟 , 𝑄𝑟) s.t. Φ(𝑇𝑠 , 𝑄𝑟)=0, Ψ(𝑇𝑠 , 𝑄𝑟) ≤ 0
To have the model learn to satisfy the constraints, we adopt the
augmented Lagrangian method, inspired by [17]. This involves
introducing penalty terms into the objective function to repre-
sent constraint violations. These penalty terms are weighted
by Lagrange multipliers 𝜆𝑒𝑞

𝑖
for equality constraint Φ evalu-

ated at each training example (𝑇𝑠𝑖 , 𝑄𝑟𝑖), and similarly 𝜆𝑖𝑛𝑒𝑞
𝑖

for
inequality constraint Ψ. At each training step, each Lagrange
multiplier is updated by multiplying the violations of the cor-
responding output data by a parameter 𝜇. The importance of
a violation in the loss function increases as its magnitude be-
comes higher, requiring more effective minimization. Finally,
the loss function is given by

L=EMD(𝑇𝑟 , 𝑄𝑟)+
𝑁∑︁
𝑖=1

𝜇Φ(𝑇𝑠𝑖 , 𝑄𝑟𝑖)2

+
𝑁∑︁
𝑖=1

𝜆
𝑒𝑞

𝑖
Φ(𝑇𝑠𝑖 , 𝑄𝑟𝑖)+

𝑁∑︁
𝑖=1

𝜆
𝑖𝑛𝑒𝑞

𝑖
Ψ(𝑇𝑠𝑖 , 𝑄𝑟𝑖)

+
𝑁∑︁
𝑖=1

𝜇 [𝜆𝑖𝑛𝑒𝑞
𝑖

>0∨Ψ>0]Ψ(𝑇𝑠𝑖 , 𝑄𝑟𝑖)2

where𝑁 is the training dataset size. Training with these penalty
terms enables the model to learn the consistency between the
input and output, enforced by the constraints. As shown in
Fig. 4c, the imputed queue length of a transformer trained with
KAL approaches the maximum value much more (compared
to the pure transformer in Fig. 4b).
3.2 Constraint Enforcement Module (CEM)

While the incorporation of constraints in the loss function
improves the imputation accuracy, it still provides no guaran-
tee that the constraints will be satisfied. Thus, we introduce
the Constraint Enforcement Module (CEM) which aims at

correcting the output of the transformer using the SMT solver
Z3 (i.e., forces it to satisfy the constraints we outlined before
C1, C2, C3) while changing it as little as possible. We use
variables �̂�𝑐

𝑟 [𝑞] [𝑡] to denote the corrected queue lengths at
each time step. To ensure that the corrected results remain
close to the ML model’s output, we use the following objective
that minimizes the total difference between the corrected and
original values, ignoring the time steps in which the queue
length is sampled.

min
𝑇−1∑︁

𝑡=0, 𝑡∉𝑇𝑠𝑎𝑚𝑝𝑙𝑒𝑠

|�̂�𝑐
𝑟 [𝑞] [𝑡]−�̂�𝑟 [𝑞] [𝑡] |

Fig. 4d showcases the output generated using both KAL and
CEM. In this case, we observe that the imputed values precisely
follow the maximum values and periodic samples.

Observe that CEM does not significantly deteriorate the scal-
ability of the system. First, selected constraints do not require
the solver to calculate the state for every time step as in §2.3.
Second, the transformer output has already satisfied some of
the constraints, thanks to KAL.

4 Preliminary evaluation
We compare various imputation methods in terms of consis-

tency and performance when their output is used for various
downstream tasks. We find that a transformer augmented with
CEM and KAL yields the best results while being scalable.
Imputation methods: We use four methods: a non-ML one
and three transformer-based. First, we use the IterativeIm-
puter [48], a statistical method that retains the periodic samples,
models the feature with missing values as a linear function of
other features iteratively. To feed IterativeImputer with the
maximum queue length, we place the max at the midpoint of
each interval. Second, we use a transformer encoder that en-
codes the set of coarse-grained time series and a linear layer as
decoder to generate the fine-grained time series. We use EMD
as our loss function as opposed to MSE because it improves
the accuracy of the model in locating bursts. While MSE is
more commonly used, we found that it encourages the model
to find averages of plausible solutions that are overly smooth
and is disadvantageous for bursts. Finally, we augment the
transformer with KAL and with CEM as we describe in §3.

HotNets ’23, November 28–29, 2023, Cambridge, MA, USA Gong et al.

Error Metric IterImputer Transformer Transformer Transformer
+KAL +KAL+CEM

a. Max Constraint 0.49 0.88 0.93 0
b. Periodic Constraint 0.078 0.16 0.15 0
c. Sent pkts count Constraint 0.43 0.52 0.025 0
d. Burst Detection 0.32 0.18 0.17 0.16
e. Burst Height 0.98 0.85 0.76 0.69
f. Burst Frequency 0.94 0.28 0.24 0.29
g. Burst Interarrival Time 6.33 2.83 0.13 0.1
h. Empty Queue Frequency 0.95 0.26 0.19 0.18
i. Avg count of concurrent bursts 0.53 0.12 0.09 0.08

Table 1: Downstream tasks’ performance is significantly better
when the transformer is augmented with KAL and CEM.

Data Generation: To generate realistic queue lengths we use
the ns-3 simulator [45] for the scenario described in [2]. The
generated traffic follows the websearch and incast traffic pat-
terns. Each port is mapped to two queues with different classes.
We collect fine-grained time series (ground-truth) correspond-
ing to queue lengths, per-port packet and drop counts every
1ms. We choose 1ms as our fine granularity to reduce noise as
in [24]. We generate coarse-grained time series by sampling
(as described in §2.1) at 50ms granularity. Thus, the goal of the
imputation methods is to zoom into the coarse-grained queue
length by a factor of 50, i.e., turn from 50ms granularity to 1ms.
Downstream tasks: Our tasks relate to bursts as they are hard
to capture and critical for network operations. We identify
bursts in both ground truth and imputed queue lengths using
a specific method [56]. Subsequently, we calculate the normal-
ized errors of burst occurrence, burst height, burst frequency,
average inter-arrival time between consecutive bursts, and the
number of queues experiencing a burst at the same 1ms interval
during 10s. We also consider the frequency of empty queues
which is crucial for queue health [23].
Results: Fig. 4 illustrates a representative example of a queue
length on a short time period. When the IterativeImputer im-
putes it (Fig. 4a), it learns nothing from the auxiliary time series
and simply connects periodic and maximum queue values. The
transformer alone (Fig. 4b) detects the location of the burst but
not its max and is thus inconsistent. The Transformer+KAL
(Fig. 4c) learns to impute more consistent queue lengths, while
Transformer+KAL+CEM (Fig. 4d) is forced to be consistent.

Table 1 summarizes our results on evaluating different ver-
sions for: (a-c) the queue imputation consistency constraints;
(d-g) downstream tasks related to bursts; (h) queue health and
(i) concurrent queue bursts. Lower values are better in all rows.
The consistency errors (a-c) are mostly improved by incor-
porating KAL, and nullified by CEM. As KAL encourages
higher values when bursts occur, the transformer can end up
overshooting, leading to an increase in max-constraint error
when only KAL is incorporated. This highlights the need for
both CEM and KAL. The remaining tasks are improved by
11-96% when incorporating both KAL and CEM compared
to transformer alone. We also observe that CEM does not al-
ways improve the performance of burst-related tasks. That is
a trade-off between enforcing consistency and learning use-
ful patterns. The IterativeImputer does 16-98% worse than
Transformer+CEM+KAL across all tasks.

The average time for CEM to correct a 50ms transformer
output is 1.47s, a significant improvement compared to FM
alone which did not terminate for such imputations (§2.3).

5 Future Directions
Other means of integrating network knowledge: Our cur-
rent system only uses constraints that are (or can be easily
made) differentiable and thus can be incorporated into the
transformer’s loss. However, network constraints are often not
differentiable with respect to learnable parameters. An inter-
esting research direction for those constraints is to train an
ML model to learn the functions that imply satisfaction of the
property [12]. Taking one step further, the model could output
intermediate variables representing physical quantities [51]
that are easier to constrain and can then be used to calculate the
final result. For example, instead of imputing queue lengths
directly, we can impute port incoming rates using ML and get
queue lengths by associating them with routing information.
Research Question: How to optimally incorporate network-
domain knowledge into ML-based systems?
Combining FM and ML in other networking problems:
Many networking problems tackled separately by ML and FM
could be prime candidates for combining the two. For instance,
performance estimators like DeepQueueNet [58] or Mimic-
net [61] can benefit from FM by bounding the delay predictions
according to the shared buffer size. Moreover, generating ad-
versarial examples for network protocols could leverage ML-
based solutions [25, 33, 46] for discovering adversarial inputs
and FM-based systems to ensure these inputs mirror real-world
scenarios. Finally in generating synthetic traces [41, 53], one
can use knowledge in the form of rules to transform existing
or (synthetic) traces into new ones. Research Question: How
do we strive a balance between the accuracy of FM and the
creativity of ML for networking problems?
Towards practical network telemetry imputation: Our ini-
tial exploration shows the potential of software imputation of
network telemetry as an alternative to hardware upgrades. Yet,
our current system is quite limited in terms of: (i) target signal
(queue length); (ii) imputation granularity (1ms from 50ms);
and incorporated knowledge. Further investigation is needed
to allow such a system to generalize to other settings and time
series. Among other improvements, we believe making the
system work under strict timing requirements would be par-
ticularly useful, as some tasks (such as performance-driven
routing [5, 11, 26, 30], rate adaptation [28], and attack detec-
tion/prevention [36, 42]) drive real-time network activation and
are hence subject to strict timing constraints. Research Ques-
tion: Can we make telemetry imputation generalize and/or
work in real-time?

6 Acknowledgement
This work was supported by the National Science Founda-

tion (NSF) through Grant CNS-2319442, a Google Research
Scholar Award, and a Princeton Innovation Fund Award.

Integrating Formal Methods into ML Systems HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

References
[1] Soheil Abbasloo, Chen-Yu Yen, and H Jonathan Chao. 2020. Classic

meets modern: A pragmatic learning-based congestion control for the
internet. In Proceedings of the Annual conference of the ACM Special In-
terest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication. 632–647.

[2] Vamsi Addanki, Maria Apostolaki, Manya Ghobadi, Stefan Schmid,
and Laurent Vanbever. 2022. ABM: Active Buffer Management in
Datacenters. In Proceedings of the ACM SIGCOMM 2022 Conference.

[3] Maria Apostolaki, Vamsi Addanki, Manya Ghobadi, and Laurent
Vanbever. 2021. FB: A flexible buffer management scheme for data
center switches. arXiv preprint arXiv:2105.10553 (2021).

[4] Maria Apostolaki, Cedric Maire, and Laurent Vanbever. 2021. Perime-
ter: A network-layer attack on the anonymity of cryptocurrencies.
In Financial Cryptography and Data Security: 25th International
Conference, FC 2021, Virtual Event, March 1–5, 2021, Revised Selected
Papers, Part I 25. Springer, 147–166.

[5] Maria Apostolaki, Ankit Singla, and Laurent Vanbever. 2021.
Performance-Driven Internet Path Selection. In Proceedings of the ACM
SIGCOMM Symposium on SDN Research (SOSR). 41–53.

[6] Maria Apostolaki, Laurent Vanbever, and Manya Ghobadi. 2019. Fab:
Toward flow-aware buffer sharing on programmable switches. In
Proceedings of the 2019 Workshop on Buffer Sizing. 1–6.

[7] Mina Tahmasbi Arashloo, Ryan Beckett, and Rachit Agarwal. 2023.
Formal Methods for Network Performance Analysis. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
23). 645–661.

[8] Arista. 2016. Arista LANZ Overview. https://arista.com/assets/data/
pdf/Whitepapers/Arista_LANZ_Overview_TechBulletin_0213.pdf.

[9] Venkat Arun, Mina Tahmasbi Arashloo, Ahmed Saeed, Mohammad
Alizadeh, and Hari Balakrishnan. 2021. Toward formally verifying con-
gestion control behavior. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference. 1–16.

[10] Clark Barrett and Cesare Tinelli. 2018. Satisfiability modulo theories.
Springer.

[11] Henry Birge-Lee, Maria Apostolaki, and Jennifer Rexford. 2022. It
takes two to tango: cooperative edge-to-edge routing. In Proceedings
of the 21st ACM Workshop on Hot Topics in Networks. 174–180.

[12] Thomas A Henzinger Mathias Lechner Chatterjee, Krishnendu and
Dorde Zikelic. 2023. A learner-verifier framework for neural network
controllers and certificates of stochastic systems. In Proceedings of Tools
and Algorithms for the Construction and Analysis of Systems. 3–25.

[13] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, Ori
Rottenstreich, Steven A Monetti, and Tzuu-Yi Wang. 2019. Fine-grained
queue measurement in the data plane. In Proceedings of the 15th
International Conference on Emerging Networking Experiments And
Technologies. 15–29.

[14] Abhijit K Choudhury and Ellen L Hahne. 1998. Dynamic queue
length thresholds for shared-memory packet switches. IEEE/ACM
Transactions On Networking 6, 2 (1998), 130–140.

[15] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT
solver. In Tools and Algorithms for the Construction and Analysis of Sys-
tems: 14th International Conference, TACAS 2008. Springer, 337–340.

[16] Alexander Dietmüller, Siddhant Ray, Romain Jacob, and Laurent Van-
bever. 2022. A New Hope for Network Model Generalization. In Proceed-
ings of the 21st ACM Workshop on Hot Topics in Networks. 152–159.

[17] Franck Djeumou, Cyrus Neary, Eric Goubault, Sylvie Putot, and Ufuk
Topcu. 2022. Neural Networks with Physics-Informed Architectures and
Constraints for Dynamical Systems Modeling. In Proceedings of The 4th
Annual Learning for Dynamics and Control Conference (Proceedings
of Machine Learning Research), Vol. 168. PMLR, 263–277.

[18] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. 2015.
Image super-resolution using deep convolutional networks. IEEE
transactions on pattern analysis and machine intelligence 38, 2 (2015),
295–307.

[19] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad,
Brighten Godfrey, and Michael Schapira. 2018. PCC vivace: Online-
learning congestion control. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18). 343–356.

[20] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin
Vechev. 2018. Netcomplete: Practical network-wide configuration
synthesis with autocompletion. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18). 579–594.

[21] Tomer Eliyahu, Yafim Kazak, Guy Katz, and Michael Schapira. 2021.
Verifying learning-augmented systems. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference. 305–318.

[22] Mark Fedor, Martin Lee Schoffstall, James R. Davin, and Dr. Jeff D.
Case. 1990. Simple Network Management Protocol (SNMP). RFC
1157. (May 1990).

[23] Sally Floyd and Van Jacobson. 1993. Random early detection gateways
for congestion avoidance. IEEE/ACM Transactions on Networking 1,
4 (Aug 1993), 397–413.

[24] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel
Rosenblum, and Amin Vahdat. 2019. SIMON: A Simple and Scalable
Method for Sensing, Inference and Measurement in Data Center
Networks. In 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19). 549–564.

[25] Tomer Gilad, Nathan H Jay, Michael Shnaiderman, Brighten Godfrey,
and Michael Schapira. 2019. Robustifying network protocols with
adversarial examples. In Proceedings of the 18th ACM Workshop on
Hot Topics in Networks. 85–92.

[26] Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto
Dainotti, Stefano Vissicchio, and Laurent Vanbever. 2019. Blink: Fast
Connectivity Recovery Entirely in the Data Plane. In 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
19). USENIX Association, Boston, MA, 161–176.

[27] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay
Gill, Mohan Nanduri, and Roger Wattenhofer. 2013. Achieving high
utilization with software-driven WAN. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM. 15–26.

[28] Mehdi Hosseinzadeh, Karthick Shankar, Maria Apostolaki, Jay
Ramachandran, Steven E Adams, Vyas Sekar, and Bruno Sinopoli. 2023.
CANE: A Cascade Control Approach for Network-Assisted Video
QoE Management. IEEE Transactions on Control Systems Technology
(2023).

[29] Zied Ben Houidi, Raphael Azorin, Massimo Gallo, Alessandro
Finamore, and Dario Rossi. 2022. Towards a Systematic Multi-Modal
Representation Learning for Network Data. In Proceedings of the 21st
ACM Workshop on Hot Topics in Networks. 181–187.

[30] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rexford, and David
Walker. 2020. Contra: A programmable system for performance-aware
routing. In 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20). 701–721.

[31] Nathan Jay, Noga H Rotman, P Godfrey, Michael Schapira, and Aviv
Tamar. 2018. Internet congestion control via deep reinforcement
learning. arXiv preprint arXiv:1810.03259 (2018).

[32] Alan Jeffrey and Taghrid Samak. 2009. Model checking firewall policy
configurations. In 2009 IEEE International Symposium on Policies for
Distributed Systems and Networks. IEEE, 60–67.

[33] Samuel Jero, Md Endadul Hoque, David R Choffnes, Alan Mislove,
and Cristina Nita-Rotaru. 2018. Automated Attack Discovery in TCP
Congestion Control Using a Model-guided Approach.. In NDSS.

[34] Qiao Kang, Jiarong Xing, Yiming Qiu, and Ang Chen. 2021. Probabilis-
tic profiling of stateful data planes for adversarial testing. In Proceedings
of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 286–301.

[35] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris,
Sifan Wang, and Liu Yang. 2021. Physics-informed machine learning.
Nature Reviews Physics 3, 6 (2021), 422–440.

https://arista.com/assets/data/pdf/Whitepapers/Arista_LANZ_Overview_TechBulletin_0213.pdf
https://arista.com/assets/data/pdf/Whitepapers/Arista_LANZ_Overview_TechBulletin_0213.pdf

HotNets ’23, November 28–29, 2023, Cambridge, MA, USA Gong et al.

[36] Ege Cem Kirci, Maria Apostolaki, Roland Meier, Ankit Singla, and
Laurent Vanbever. 2022. Mass surveillance of VoIP calls in the data
plane. In Proceedings of the Symposium on SDN Research. 33–49.

[37] Ankit Kumar, Max von Hippel, Pete Manolios, and Cristina Nita-Rotaru.
2022. Formal Model-Driven Analysis of Resilience of GossipSub to At-
tacks from Misbehaving Peers. arXiv preprint arXiv:2212.05197 (2022).

[38] John H Lagergren, John T Nardini, Ruth E Baker, Matthew J Simpson,
and Kevin B Flores. 2020. Biologically-informed neural networks
guide mechanistic modeling from sparse experimental data. PLoS
computational biology 16, 12 (2020), e1008462.

[39] Franck Le, Mudhakar Srivatsa, Raghu Ganti, and Vyas Sekar. 2022. Re-
thinking Data-Driven Networking with Foundation Models: Challenges
and Opportunities. In Proceedings of the 21st ACM Workshop on Hot
Topics in Networks. 188–197.

[40] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew
Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani,
Johannes Totz, Zehan Wang, and Wenzhe Shi. 2017. Photo-Realistic
Single Image Super-Resolution Using a Generative Adversarial
Network. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

[41] Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar.
2019. Generating high-fidelity, synthetic time series datasets with
doppelganger. arXiv preprint arXiv:1909.13403 (2019).

[42] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee,
Changhoon Kim, Xin Jin, Vladimir Braverman, Minlan Yu, and Vyas
Sekar. 2021. Jaqen: A High-Performance Switch-Native Approach for
Detecting and Mitigating Volumetric DDoS Attacks with Programmable
Switches. In 30th USENIX Security Symposium (USENIX Security 21).
3829–3846.

[43] Antonis Manousis, Rahul Anand Sharma, Vyas Sekar, and Justine
Sherry. 2020. Contention-aware performance prediction for virtualized
network functions. In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication.
270–282.

[44] Nick McKeown, Guido Appenzeller, and Isaac Keslassy. 2019. Sizing
Router Buffers (Redux). SIGCOMM Comput. Commun. Rev. 49, 5 (nov
2019), 69–74.

[45] NS3. 2023. NS3 Network Simulator. https://www.nsnam.org/.
[46] Anthony Peterson, Samuel Jero, Md Endadul Hoque, David R Choffnes,

and Cristina Nita-Rotaru. 2020. aBBRate: Automating BBR Attack
Exploration Using a Model-Based Approach. In 23rd International
Symposium on Research in Attacks, Intrusions and Defenses (RAID
2020). 225–240.

[47] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. 2000. The earth
mover’s distance as a metric for image retrieval. International journal
of computer vision 40, 2 (2000), 99.

[48] Scikit-Learn. 2023. IterativeImputer¶. https://scikit-learn.org/stable/
modules/generated/sklearn.impute.IterativeImputer.html.

[49] Rahul Anand Sharma, Ishan Sabane, Maria Apostolaki, Anthony
Rowe, and Vyas Sekar. 2022. Lumen: a framework for developing and
evaluating ML-based IoT network anomaly detection. In Proceedings of
the 18th International Conference on emerging Networking EXperiments
and Technologies. 59–71.

[50] Kausik Subramanian, Loris D’Antoni, and Aditya Akella. 2017.
Genesis: Synthesizing forwarding tables in multi-tenant networks. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages. 572–585.

[51] Peter Toth, Danilo Jimenez Rezende, Andrew Jaegle, Sébastien
Racanière, Aleksandar Botev, and Irina Higgins. 2020. Hamiltonian
Generative Networks. (2020). arXiv:cs.LG/1909.13789

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin.
2017. Attention is All you Need. In Advances in Neural Information
Processing Systems, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran
Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[53] Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. 2021. Real-
esrgan: Training real-world blind super-resolution with pure synthetic
data. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 1905–1914.

[54] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu
Qiao, and Chen Change Loy. 2018. Esrgan: Enhanced super-resolution
generative adversarial networks. In Proceedings of the European
conference on computer vision (ECCV) workshops. 0–0.

[55] Jackson Woodruff, Andrew W Moore, and Noa Zilberman. 2019.
Measuring burstiness in data center applications. In Proceedings of the
2019 Workshop on Buffer Sizing. 1–6.

[56] Jackson Woodruff, Andrew W Moore, and Noa Zilberman. 2020.
Measuring Burstiness in Data Center Applications. In Proceedings of
the 2019 Workshop on Buffer Sizing. 6.

[57] Zhiying Xu, Francis Y. Yan, Rachee Singh, Justin T. Chiu, Alexander M.
Rush, and Minlan Yu. 2023. Teal: Learning-Accelerated Optimization
of WAN Traffic Engineering. In Proceedings of the ACM SIGCOMM
2023 Conference. New York, NY, USA, 378–393.

[58] Qingqing Yang, Xi Peng, Li Chen, Libin Liu, Jingze Zhang, Hong Xu,
Baochun Li, and Gong Zhang. 2022. DeepQueueNet: Towards Scalable
and Generalized Network Performance Estimation with Packet-Level
Visibility. In Proceedings of the ACM SIGCOMM 2022 Conference.
441–457.

[59] Kai Zhang, Luc Van Gool, and Radu Timofte. 2020. Deep unfolding
network for image super-resolution. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 3217–3226.

[60] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy.
2017. High-resolution measurement of data center microbursts. In
Proceedings of the 2017 Internet Measurement Conference. 78–85.

[61] Qizhen Zhang, Kelvin KW Ng, Charles Kazer, Shen Yan, João Sedoc,
and Vincent Liu. 2021. Mimicnet: fast performance estimates for data
center networks with machine learning. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference. 287–304.

[62] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. 2018.
Residual dense network for image super-resolution. In Proceedings
of the IEEE conference on computer vision and pattern recognition.
2472–2481.

[63] Timothy Zhu, Daniel S Berger, and Mor Harchol-Balter. 2016. SNC-
Meister: Admitting more tenants with tail latency SLOs. In Proceedings
of the Seventh ACM Symposium on Cloud Computing. 374–387.

https://www.nsnam.org/
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
https://arxiv.org/abs/cs.LG/1909.13789
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

	Abstract
	1 Introduction
	2 Case study
	2.1 Example Scenario
	2.2 Telemetry Imputation with ML
	2.3 Telemetry Imputation with FM

	3 Combining ML and FM
	3.1 Knowledge Augmented Loss (KAL)
	3.2 Constraint Enforcement Module (CEM)

	4 Preliminary evaluation
	5 Future Directions
	6 Acknowledgement
	References

