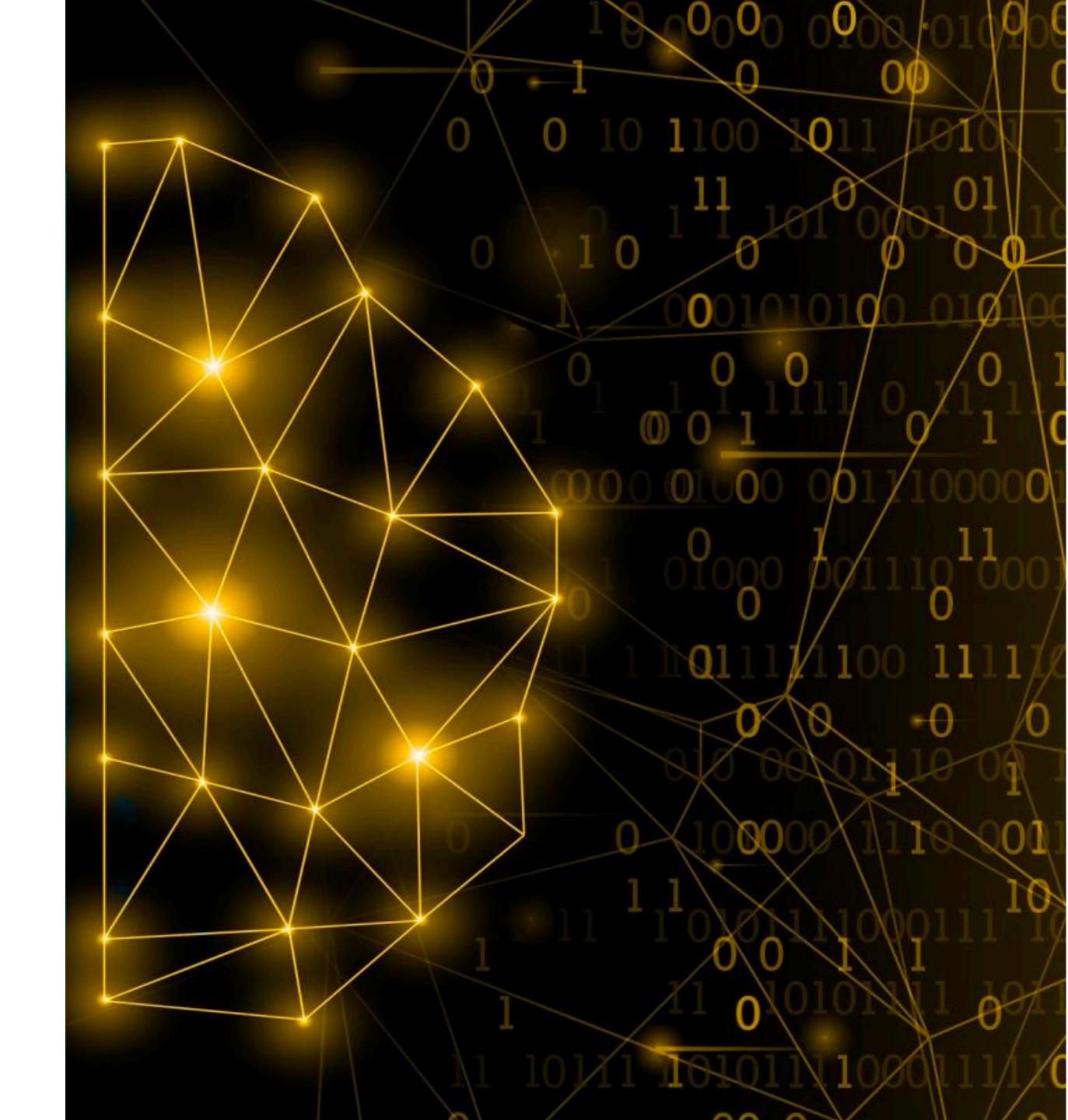
Towards Integrating Formal Methods into ML-Based Systems for Networking ACM HotNets 2023

Fengchen Gong, Divya Raghunathan, Aarti Gupta, Maria Apostolaki

Machine learning is scalable and adaptable But...

How generalizable is a machine learning model?

How do we make sure a model is trustworthy when used in real world?



ML-based solutions lack correctness guarantees

ML-based solutions may...

- result in implausible outputs
- perform worse than simple heuristics
- contradict common sense

0t° $(\mathcal{X}) = \frac{1}{\sqrt{k}} \left(A_{-e^{ik,k}} + A_{-e^{ik,k}} \right) \quad \chi < 0$ Ωm=10 $S = \frac{1}{2} \int d^4x \left(R + \frac{R^2}{6M^2} \right)$ 87G Tmu $H|\psi(t)\rangle = i\hbar \frac{\partial}{\partial t}|\psi(t)\rangle$ $p^2 c^2 + m^2 c^4$ $P = \hbar k = \frac{hv}{c} = \frac{h}{\lambda}$ $\delta(k_1 + k_2)$

Formal Methods leverages knowledge to generate correct results

...but, it doesn't scale

0t7 1.1 $f(\mathcal{X}) = \frac{1}{\sqrt{K_{i}}} (A_{-e^{iK,K}} + A_{-e^{iK,K}}) \quad X < 0$ $\Omega_m = 1.0$ - C $S = \frac{1}{2} \int d^4x \left(R^+ \frac{R^2}{6M^2} \right)$ $R_{g_m} = \frac{8\pi G}{c^4} T_m$ $H|\psi(t)\rangle = i\hbar \frac{\partial}{\partial t}|\psi(t)\rangle$ $p^2 c^2 + m^2 c^4$ $P = \hbar k = \frac{hv}{c} = \frac{h}{\lambda}$ $\delta(k_1+k_2)$ k,2 OH

Image by Donald Jorgensen | Pacific Northwest National Laboratory

0.0

01

80

0

0

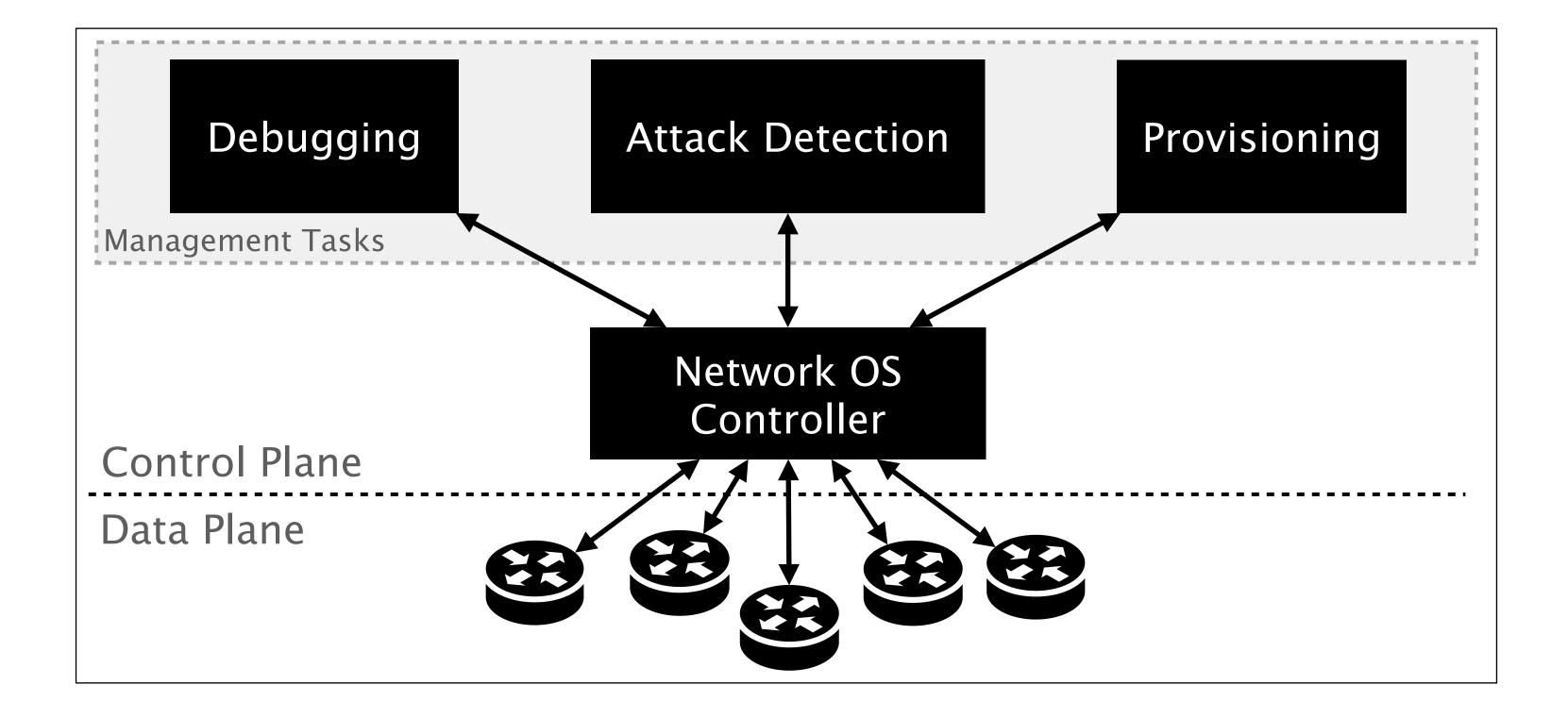
0

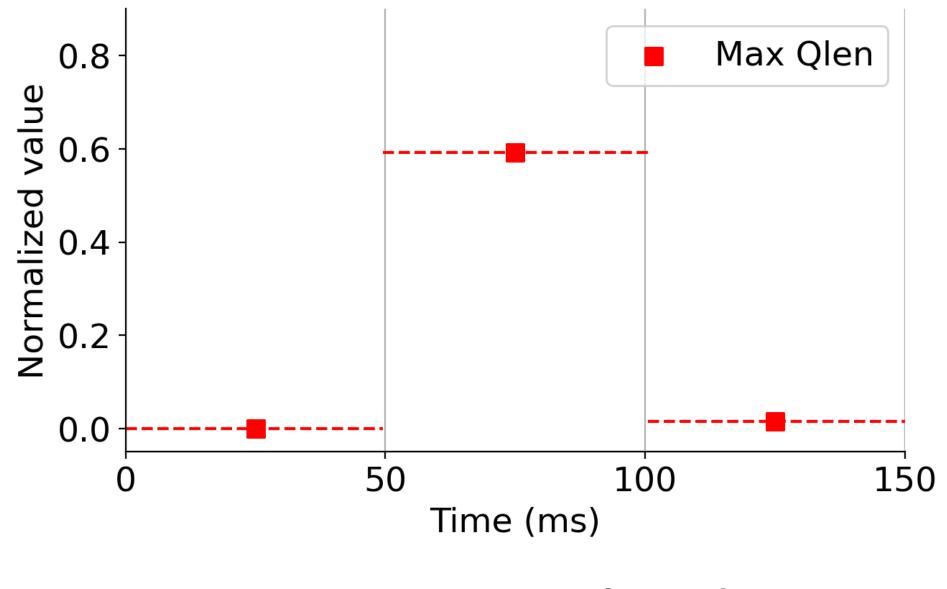
Towards Integrating Formal Methods into **ML-Based Systems for Networking**

Formal Methods closed-forms

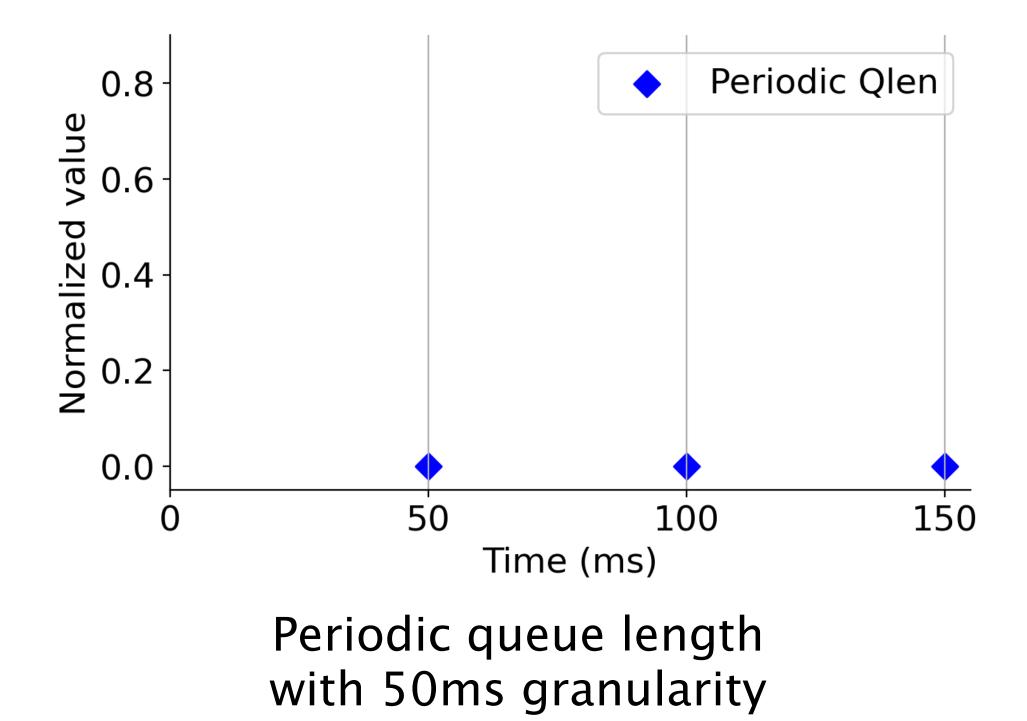
Machine Learning correlations

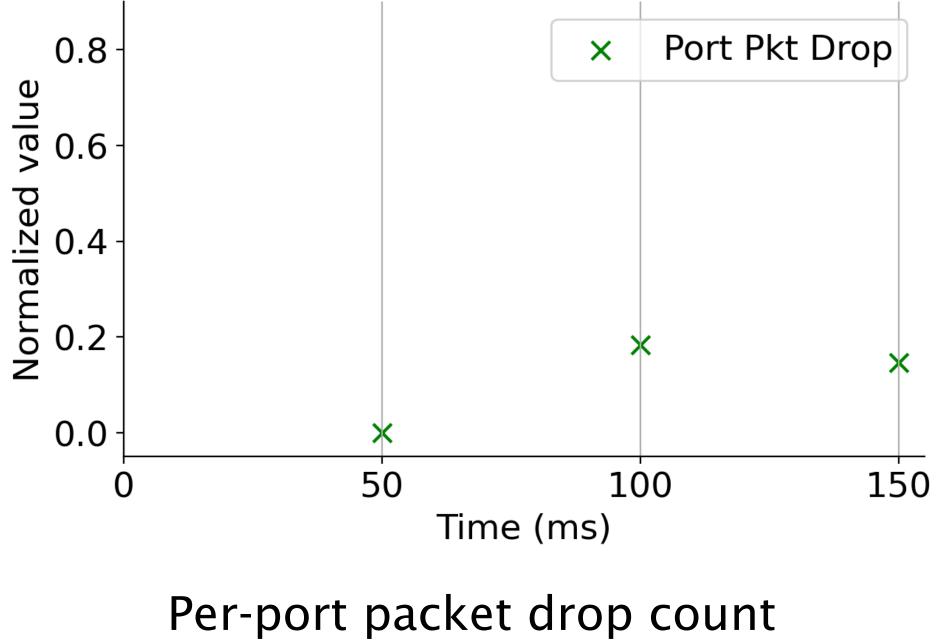
Fine-grained telemetry is required for network managements, but hard to get



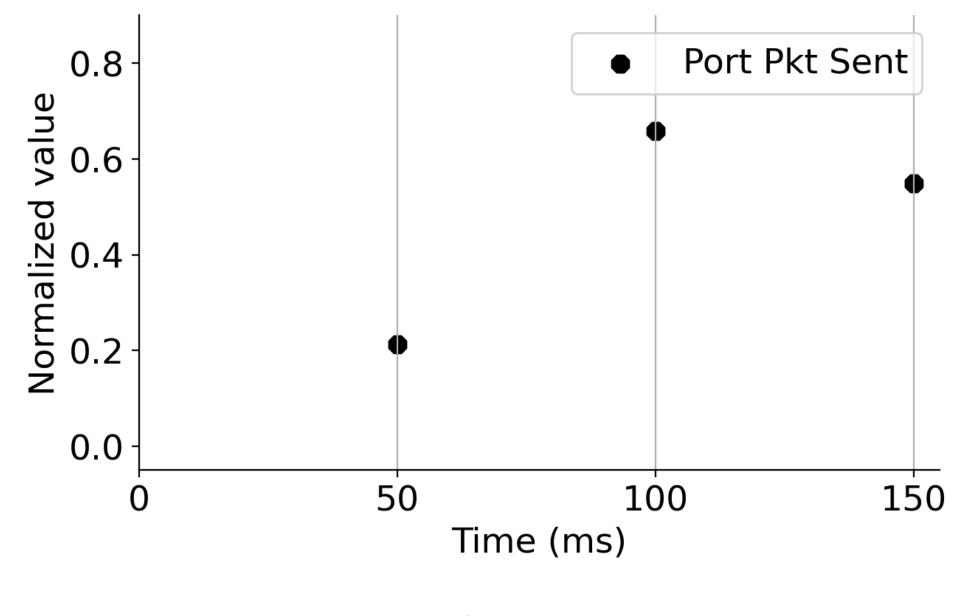


Maximum queue length with 50ms granularity



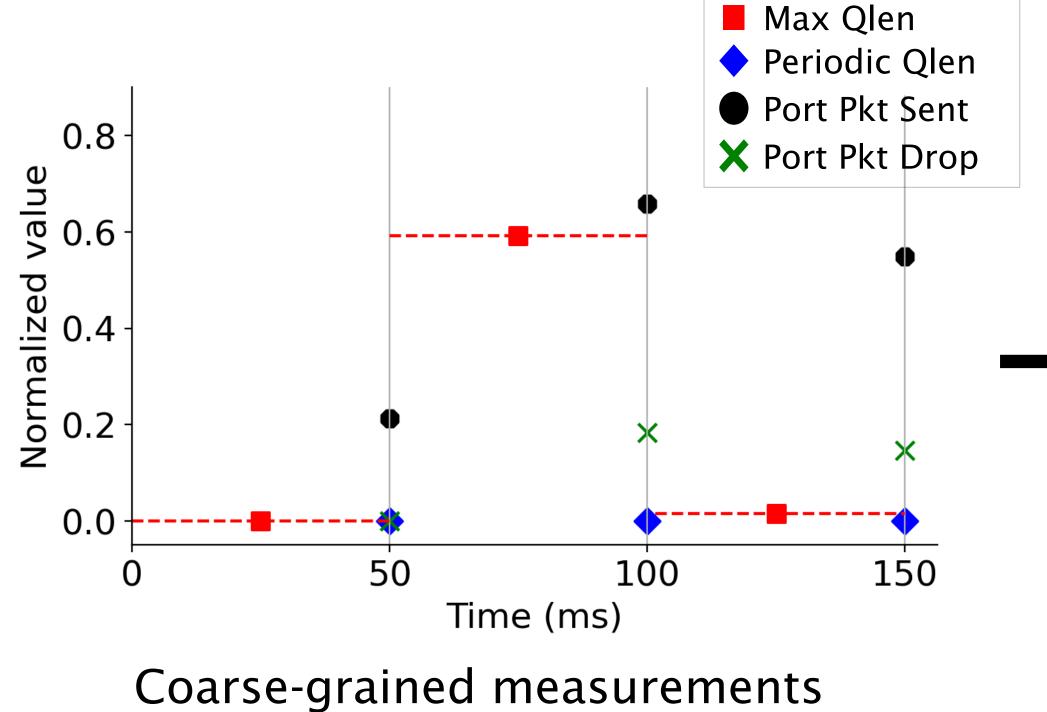


with 50ms granularity

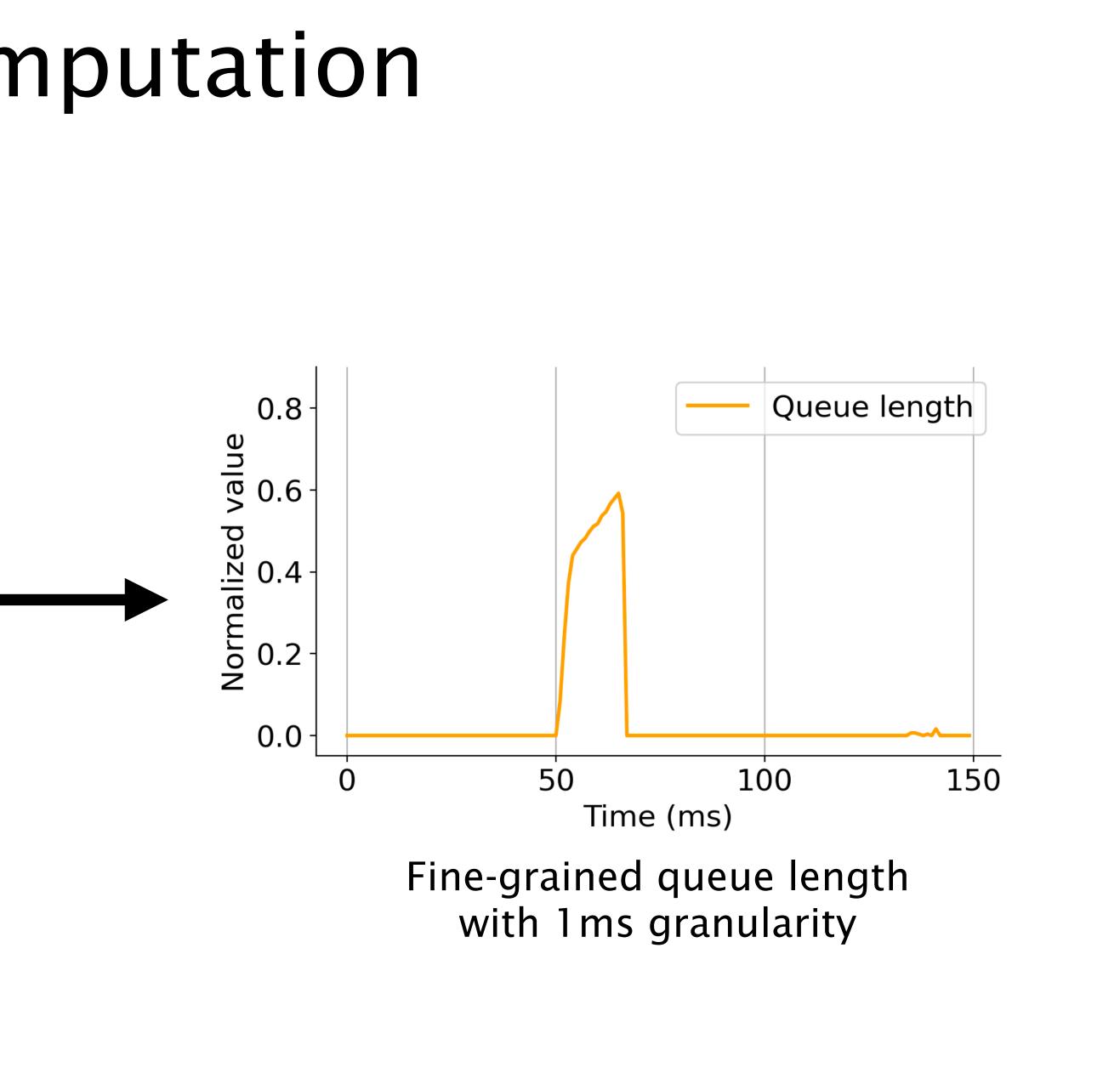


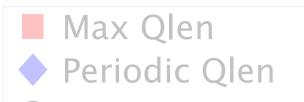
Per-port packet sent count with 50ms granularity

Network telemetry imputation

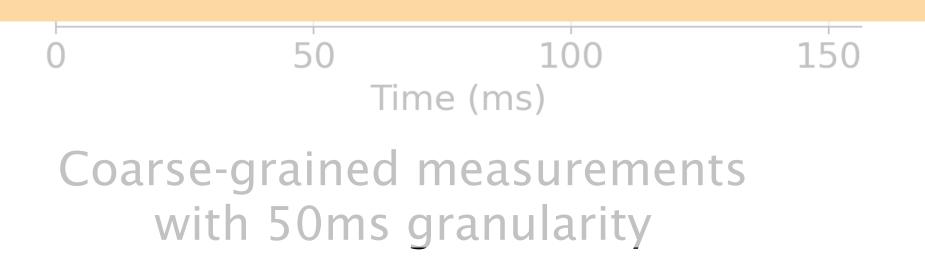


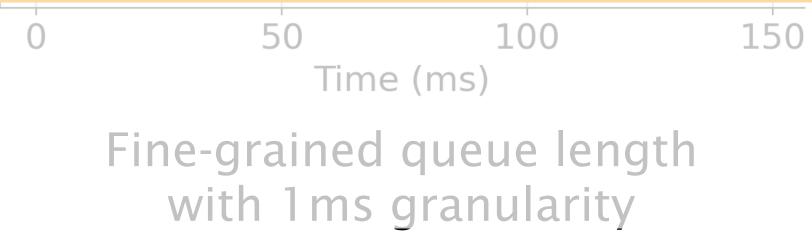
with 50ms granularity



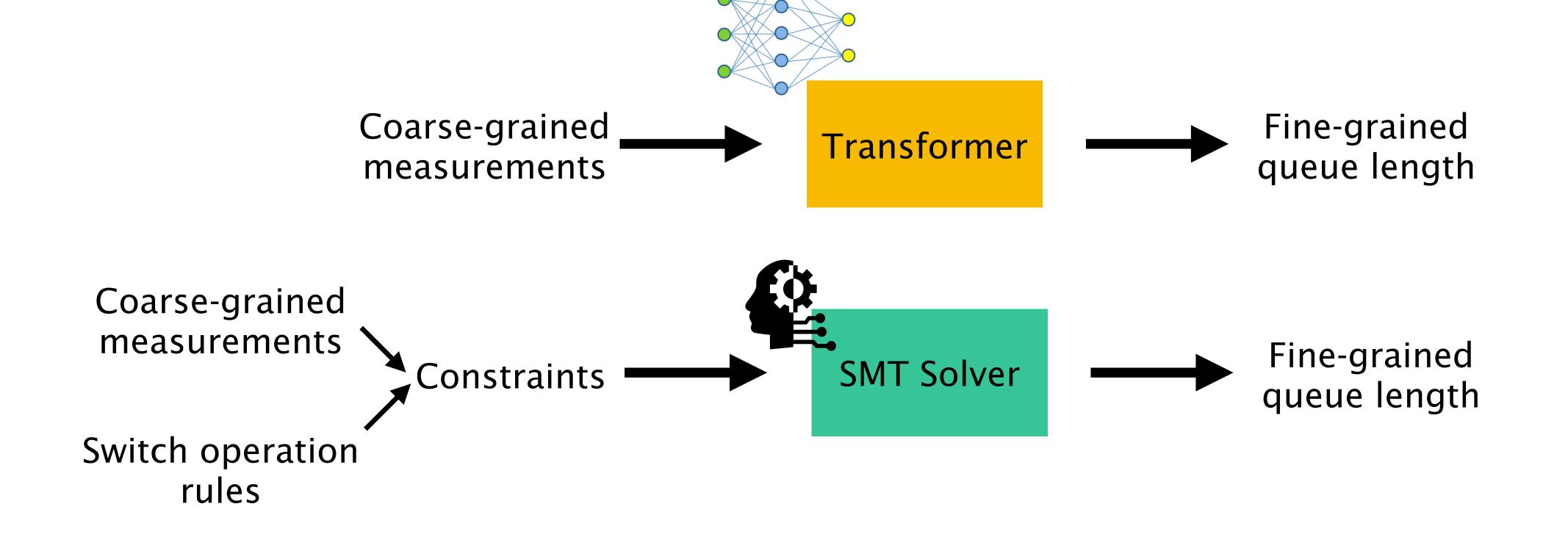


Network Telemetry Imputation: recovering fine-grained time-series from coarse-grained ones

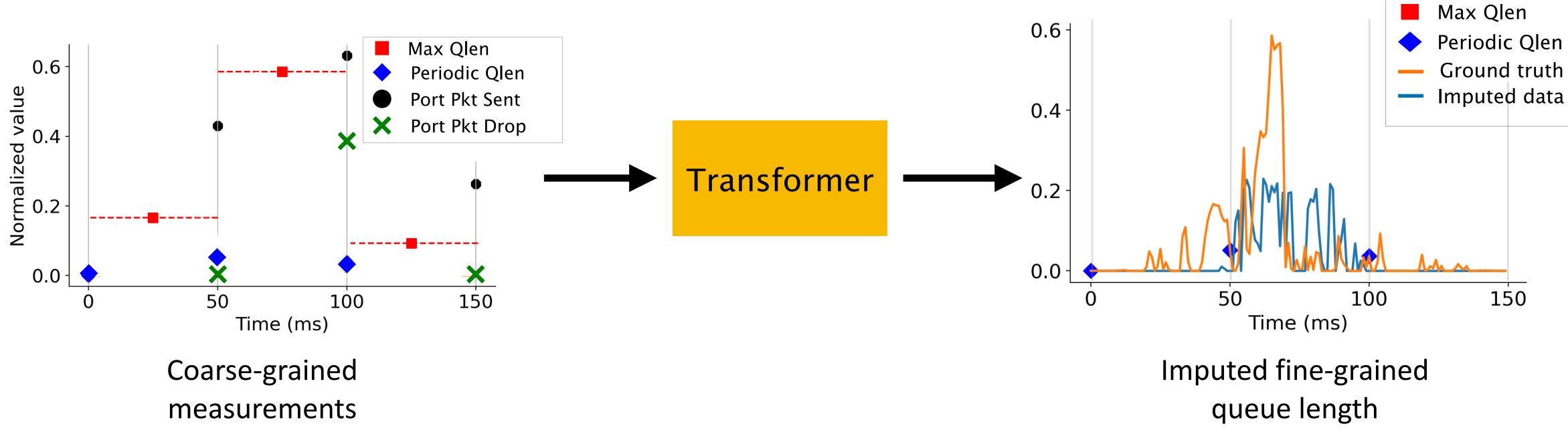




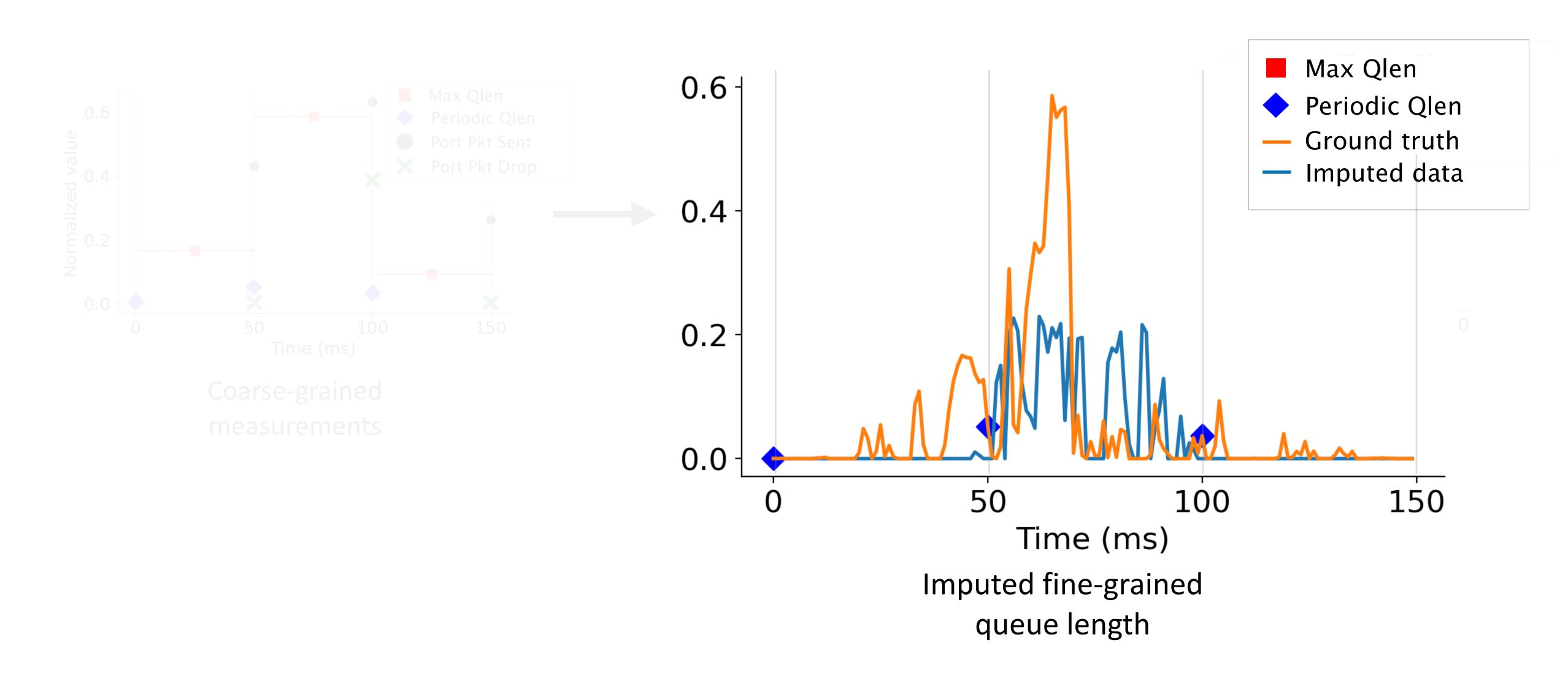
Potential solutions: ML or Formal Methods



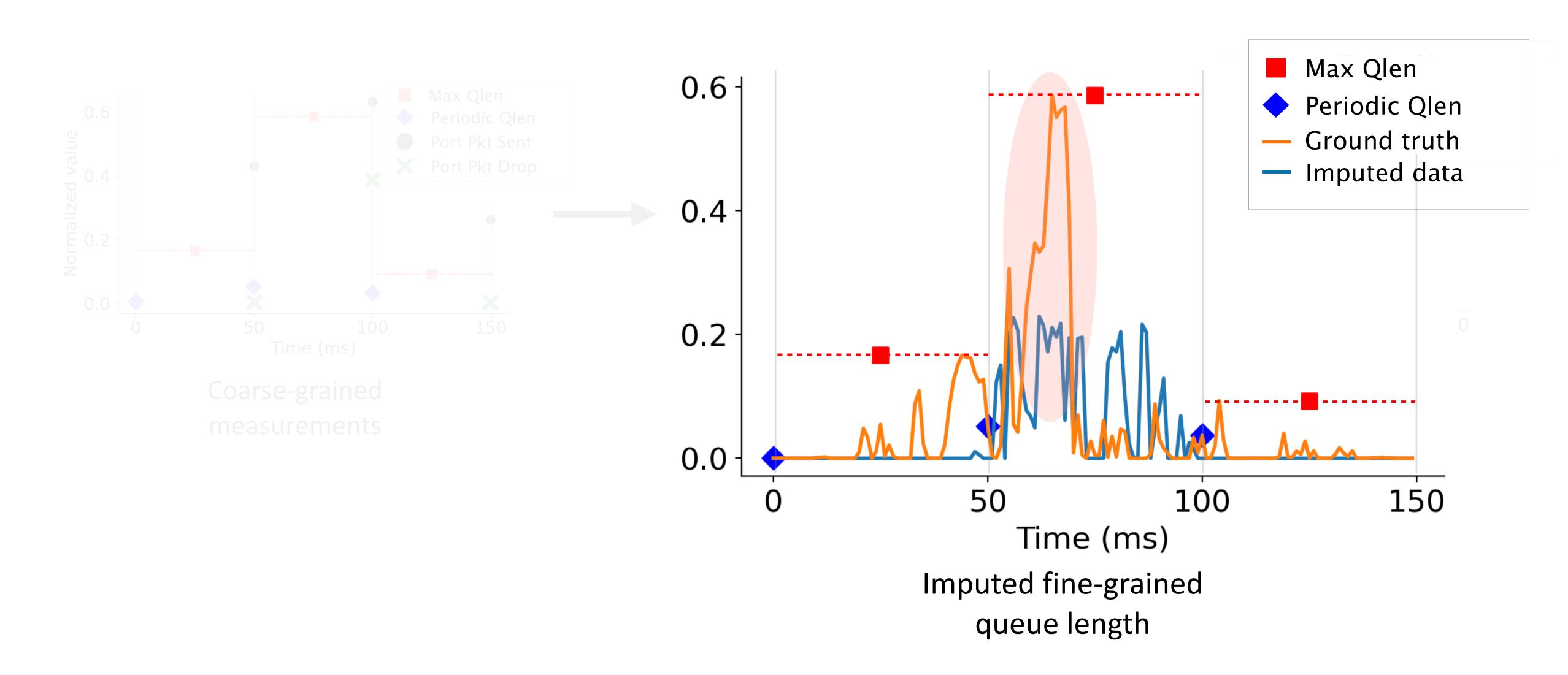
A transformer can learn correlations, but the output lacks correctness



A transformer can learn correlations, but the output lacks correctness



A transformer can learn correlations, but the output lacks correctness



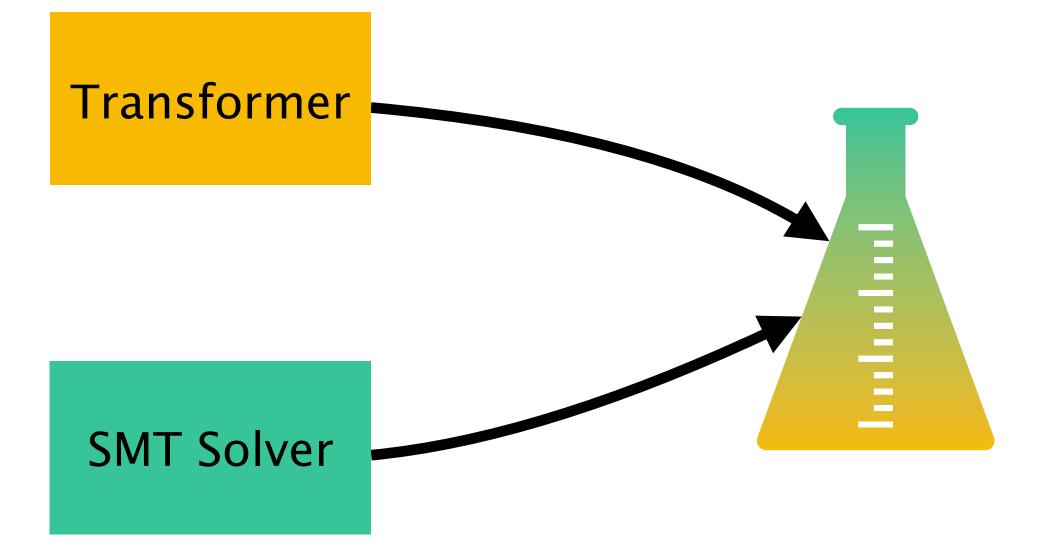
Formal Methods can find a plausible solution, but is hard to scale

Operation constraints: Scheduling algorithm Buffer management algorithm

Measurement constraints: The maximum queue length The periodic queue length SMT Solver

Couldn't finish in 24hrs for 1Gbps bandwidth

How to integrate them?



Challenges:

No standard way

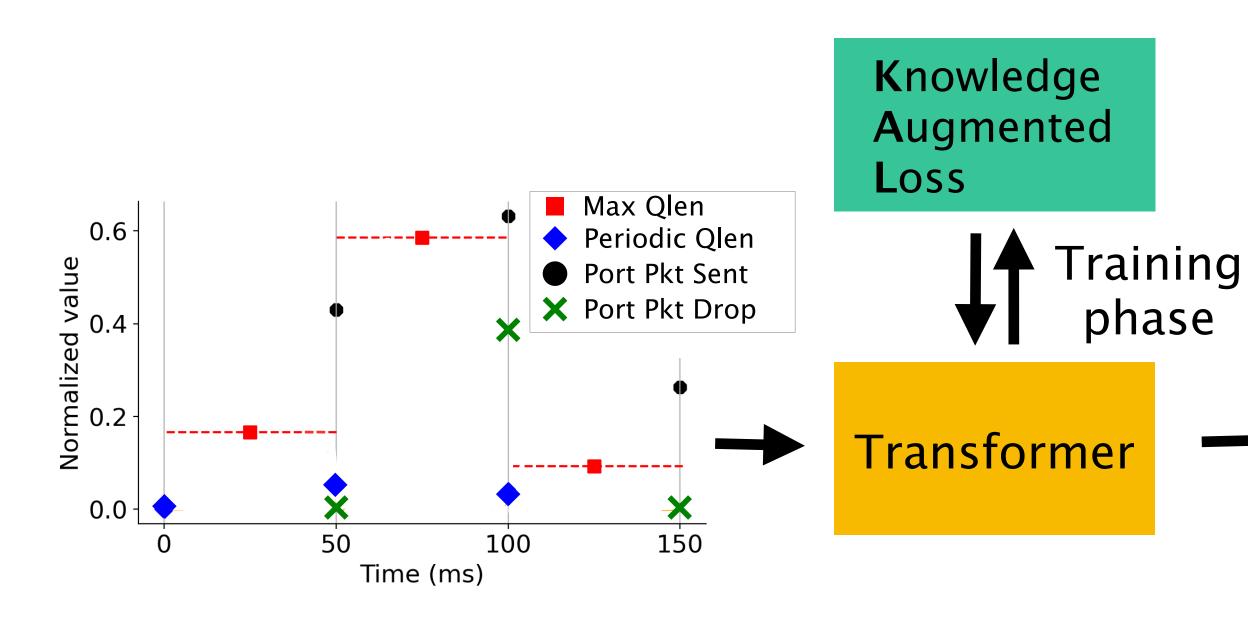
ML models cannot easily ingest traditional rules or relationships

Incorporating knowledge can increase the complexity of the learning process

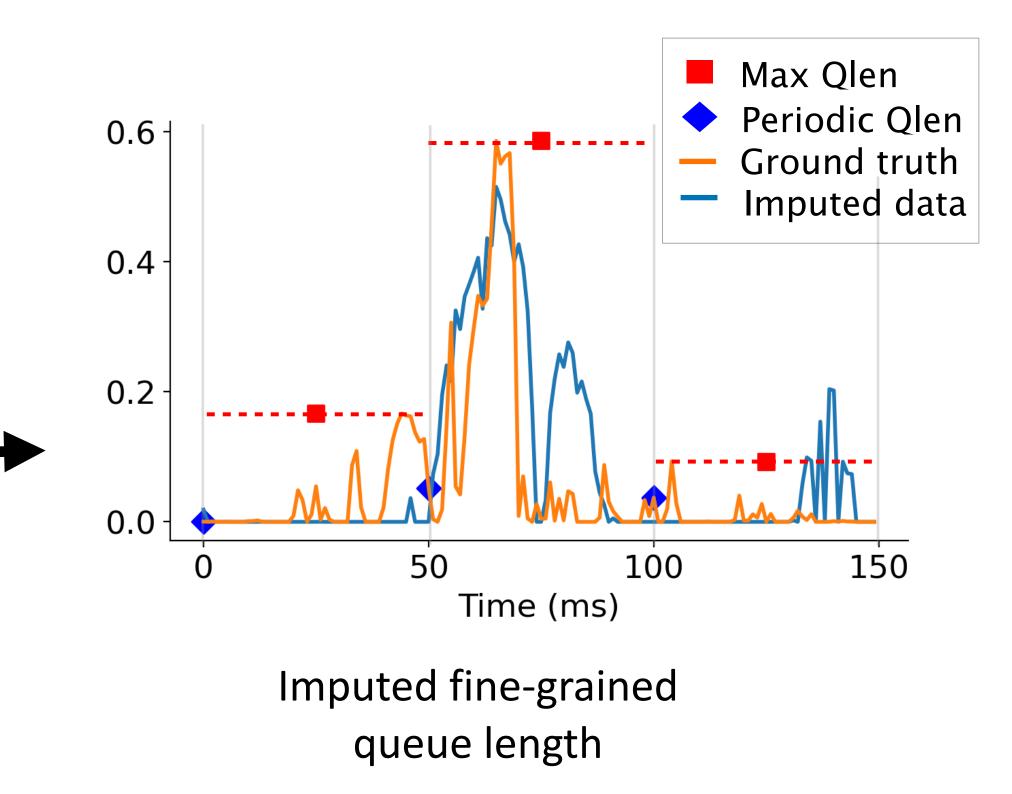
Start from transformer

Transformer

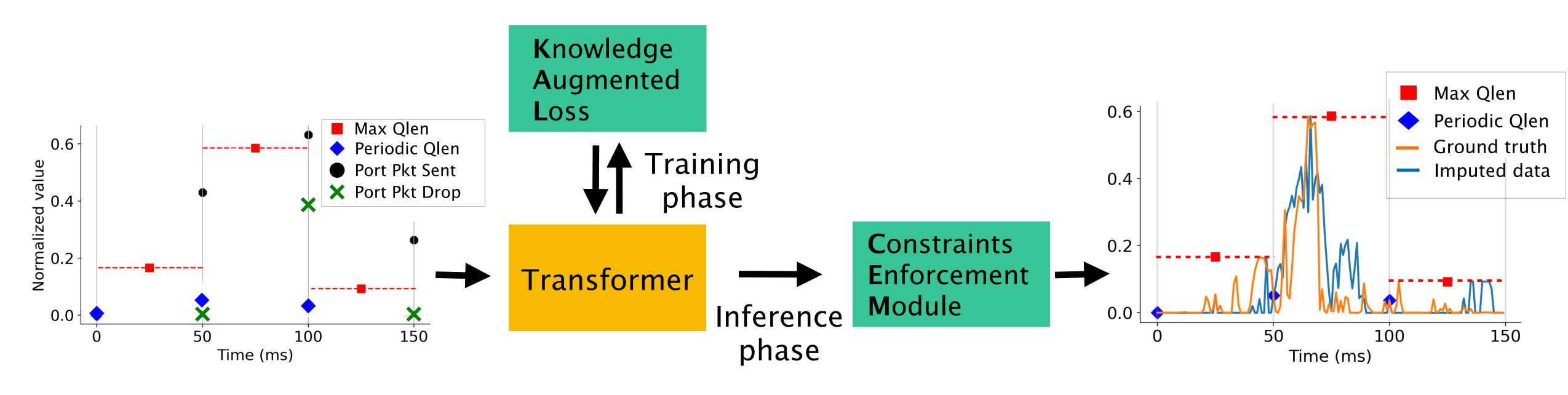
Knowledge augmented loss



Coarse-grained Time Series



Constraint enforcement module



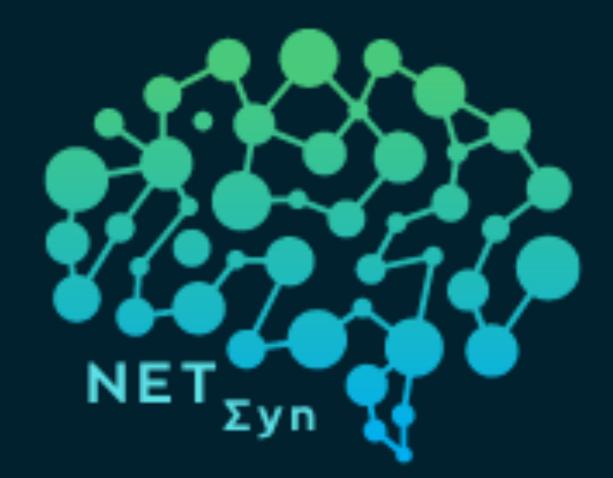
Coarse-grained Time Series

Imputed fine-grained queue length

What next?

Integrating Formal Methods and ML Is there a better way of integrating them? What other network problems can benefit?

Generalize Network Telemetry Imputation What other telemetry metrics can be imputed? How do we impute real-time?



netsyn.princeton.edu