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Machine learning is
scalable and adaptable

But...

How generalizable is a
machine learning model?

How do we make sure a
model is trustworthy
when used in real world?




ML-based solutions lack L O
correctness guarantees '

ML-based solutions may...
B result in implausible outputs
B perform worse than simple heuristics
B contradict common sense




Formal Methods leverages
knowledge to generate correct
results

Constraints

— | SMT Solver  —— Plausible

output

...but, it doesn’t scale
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Towards Integrating Formal Methods into
ML-Based Systems for Networking

Formal Methods Machine Learning
closed-forms correlations

h_l

Solutions with both correctness and scalability



Fine-grained telemetry is required for network
managements, but hard to get
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Normalized value

Coarse-grained telemetry in switches
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Normalized value

Coarse-grained telemetry in switches
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Normalized value

Coarse-grained telemetry in switches
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Normalized value

Coarse-grained telemetry in switches
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Normalized value

Network telemetry imputation

O
o

O
o

O
N

O
N

O
o

B Max Qlen

X0oe®

Periog
Port P

Port P

ic Qlen
Kt Sent

Kt Drop

0 50 100

Time (ms)

Coarse-grained measurements

with 50ms granularity

|

Normalized value

O
o

O
o

O
N

i
N

O
o

Queue length

50 100
Time (ms)
Fine-grained queue length
with Tms granularity

150



Network Telemetry Imputation: recovering
fine-grained time-series from coarse-grained ones



Potential solutions: ML or Formal Methods
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A transformer can learn correlations, but the
output lacks correctness
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A transformer can learn correlations, but the

output lacks correctness
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A transformer can learn correlations, but the
output lacks correctness
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Formal Methods can find a plausible solution,
but is hard to scale

Operation constraints:
Scheduling algorithm
Buffer management algorithm

— SMT Solver

Measurement constraints:
The maximum queue length
The periodic queue length

Couldn’t finish in 24hrs
for 1Gbps bandwidth



How to integrate them?

Challenges:

Transformer
\ No standard way

ML models cannot easily ingest traditional
rules or relationships

Incorporating knowledge can increase

SMT Solver the complexity of the learning process



Start from transformer

Transformer
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Constraint enforcement module
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What next?

Integrating Formal Methods and ML
Is there a better way of integrating them?
What other network problems can benefit?

Generalize Network Telemetry Imputation

What other telemetry metrics can be imputed?
How do we impute real-time?
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