
Performance-Driven Internet Path Selection
Maria Apostolaki

ETH Zürich
Switzerland

apmaria@ethz.ch

Ankit Singla
ETH Zürich
Switzerland

ankit.singla@inf.ethz.ch

Laurent Vanbever
ETH Zürich
Switzerland

lvanbever@ethz.ch

ABSTRACT
Internet routing can often be sub-optimal, with the chosen routes
providing worse performance than other available policy-compliant
routes. This stems from the lack of visibility into route performance
at the network layer. While this is an old problem, we argue that
recent advances in programmable hardware finally open up the
possibility of performance-aware routing in a deployable, BGP-
compatible manner.

We introduce ROUTESCOUT, a hybrid hardware/software system
supporting performance-based routing at ISP scale. In the data plane,
ROUTESCOUT leverages P4-enabled hardware to monitor perfor-
mance across policy-compliant route choices for each destination,
at line-rate and with a small memory footprint. ROUTESCOUT’s
control plane then asynchronously pulls aggregated performance
metrics to synthesize a performance-aware forwarding policy.

We show that ROUTESCOUT can monitor performance across
most of an ISP’s traffic, using only 4 MB of memory. Further, its
control can flexibly satisfy a variety of operator objectives, with
sub-second operating times.

CCS CONCEPTS
• Networks → Programmable networks; Routing protocols; Con-
trol path algorithms; Network performance evaluation; Public
Internet; Network dynamics.

ACM Reference Format:
Maria Apostolaki, Ankit Singla, and Laurent Vanbever. 2021. Performance-
Driven Internet Path Selection. In The ACM SIGCOMM Symposium on
SDN Research (SOSR) (SOSR ’21), October 11–12, 2021, Virtual Event,
USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3482898.
3483357

1 INTRODUCTION
Internet routing uses cost-driven policies to select one interdomain
path per destination along which to direct traffic. To select one
path amongst multiple policy-compliant ones, the Internet’s Border
Gateway Protocol (BGP) uses particularly crude criteria rather than
dynamically optimizing for performance. For instance, BGP will
favor paths crossing fewer networks or paths crossing networks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SOSR ’21, October 11–12, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9084-2/21/10. . . $15.00
https://doi.org/10.1145/3482898.3483357

whose identifiers are smaller.1 As a result, BGP selects routes that
are often suboptimal in terms of throughput, latency, and reliability.

This problem is far from new and the sub-optimality of Inter-
net routing is long-established [54, 58, 59]. Yet, despite several
strong attempts [8–11, 54, 61], limited progress has been made. The
problem is that enabling performance-aware routing is particularly
challenging, requiring: scalable monitoring of path performance,
handling path dynamics, stability and correctness of routing, and
insurmountable resistance to any approach incompatible with BGP.

Despite the problem’s difficulty and its long history, we posit its
time to revisit this problem for three reasons.

First, Internet application requirements have evolved, with a
sharper focus on reliably high network performance. For hyperscale
Web services with numerous well-connected points-of-presence
across the globe, BGP is, in fact, good enough most of the time [12].
However, even in these best-case environments, the benefits of reduc-
ing tail latency and performance variability in response to transient
congestion are valuable enough for providers like Google and Face-
book to invest in performance-aware routing [55, 64]. Google’s
Espresso showed that being able to dynamically reroute around tran-
sient congestion improved mean time between rebuffers in their
video service by 35–170% [64]. Espresso explicitly pins these gains
on being able to dynamically respond to performance variability
across paths (rather than just average-case improvement from a
one-time evaluation), thus underscoring the need for making path
decisions based on continuous assessments of the changing per-
formance of paths. Beyond Web services, other applications are
even more demanding: in gaming, even small latency overheads can
put players at a disadvantage [28]. The importance of tail latency
as opposed to mean latency is also demonstrated in CDN’s efforts
to improve latency of the worst-performing clients[19]. Thus, if
performance-aware routing were practical, the benefits would justify
significant design effort.

Second, the available paths are increasingly diverse due to in-
creased peering and the establishment of Internet Exchange Points
(IXPs), which did not exist at BGP’s first design iteration (1989). Fur-
ther, if plans for satellite-based global Internet connectivity [18, 57]
come to fruition, the performance gap across different paths will also
increase. Two teams of researchers have separately argued in recent
position papers [14, 44] that these satellite systems exhibit contin-
uous changes in both the performance and availability of routes,
and thus, will pose challenges to the performance-oblivious and
slow-to-converge BGP routing.

1One of BGP tie-breaking criteria is indeed to prefer routes announced by the router
with the smallest IP address [51].

https://doi.org/10.1145/3482898.3483357
https://doi.org/10.1145/3482898.3483357
https://doi.org/10.1145/3482898.3483357

SOSR ’21, October 11–12, 2021, Virtual Event, USA Maria Apostolaki, Ankit Singla, and Laurent Vanbever

Third, the recent development of programmable switches that
allow line-rate, per-packet data plane operations enables new design
primitives. These heretofore unavailable primitives, as we shall show,
drastically improve our ability to both evaluate and control multiple
candidate routes.

Motivated by the above factors, we present ROUTESCOUT, a
novel software-hardware co-design for performance-aware routing
that runs at each edge of the network and independently controls
the paths of the traffic exiting. ROUTESCOUT’s data plane estimates
loss and delay along different policy-compliant next-hop routes
for different destinations. It leverages probabilistic data structures
in programmable switches to aggregate delay and loss measure-
ments on a per-destination-next-hop granularity. This in-data-plane
aggregation eliminates the necessity of mirroring traffic to more
powerful general-purpose hardware, thus alleviating: (a) bandwidth
and compute overheads; and (b) deterioration in monitoring capa-
bilities when most needed, under congestion. Past methods (§2) are
incapable of producing such accurate, high-coverage, real-time, and
low-overhead performance measurements for multiple candidate
next-hops for many destinations.

The succinct measurements allow ROUTESCOUT’s control plane
to evaluate multiple policy-compliant candidate paths by measur-
ing their performance systematically for small slices of live traf-
fic. ROUTESCOUT then encodes the best path choices in the data
plane using a small memory footprint. ROUTESCOUT enforces those
choices gradually while continually monitoring performance to avoid
self-induced congestion and, therefore, oscillations [30].

While ROUTESCOUT could be used by any Autonomous System
(AS), for tractability of control, we trim the problem’s scope: we
take the perspective of a stub AS, which offers no transit services to
other ASes. This eliminates the risk of multiple parties concurrently
sensing and independently modifying the same end-to-end path
leading to transient loops and instability. We humbly suggest that
this “relaxation” still leads to a highly non-trivial and useful setting:
stubs comprise 85% of all ASes;2 and the majority of stubs are multi-
homed and virtually all Internet traffic originates from some stub.
In addition, despite sitting at the edge of the Internet, stubs often
know several paths to reach each destination: our measurements
on CAIDA AS-level topologies [2] reveal that the majority of them
(55%) can use at least two equally-preferred paths for at least 80% of
the destinations.3 Stubs also tend to connect with their neighbors via
redundant links, further increasing path diversity [47]. Finally, while
ROUTESCOUT can only control paths from the stub, not towards
it, the resulting reductions in round-trip time, and being able to
avoid congestion/failures at least in one direction, are still valuable
improvements.

ROUTESCOUT is carefully designed to run on available pro-
grammable switches, respecting constraints on memory, operations
per packet, memory accesses per packet, and constraints on accesses
to memory blocks across pipeline stages. It requires no coordination
across ASes and works over unmodified BGP. Within an AS, it yields
benefits starting with only one programmable switch deployed at the
edge.

2A likely low estimate, computed from CAIDA’s AS-level topology [2].
3For each stub we calculated the number of BGP-equivalent paths for 1000 randomly
selected destination prefixes, following [29].

Our main contributions are the following:
• ROUTESCOUT, a system capable of rerouting traffic to test the

performance of alternative routes to each destination prefix in a
controlled and automated manner.

• Methods to compute delay and loss rates across different paths
that are accurate and effective while respecting the constraints of
data-plane hardware.

• Efficient interconnection between the control and data plane that
allows: (a) fast, fine-grained, and asynchronous changes in the
forwarding and monitoring policy; (b) fast, fine-grained, and low-
bandwidth retrieval of statistics.

• An implementation of ROUTESCOUT on a Barefoot Tofino switch [5],
with an evaluation of its control- and data-plane.

2 MOTIVATION
Performance-aware routing is an old problem [8, 10, 54, 58, 59], with
several known solutions of varying ambition and complexity. Early
work [32] narrowly targeted multi-homed end-users with perfect
visibility over their performance, cost being their first priority, and
direct links the only possible bottleneck. TeXCP [41] and MATE [25]
focused on intra-domain routing, splitting traffic across already setup
tunnels. We instead tackle the problem from the perspective of an
AS picking routes to external destinations, with no end-host control
and only observing its own traffic. In this setting, we discuss several
alternatives for monitoring path performance, whose limitations
make a case for ROUTESCOUT.
Active probing: One can actively probe routes with known tools [22,
36]. Yet, probes may not be representative of real traffic’s perfor-
mance — the volume of probing traffic is likely orders of magnitude
less than the actual traffic, and some ISPs are known to treat probing
traffic preferentially [24]. Most importantly, low-volume probing is
inadequate for accurately measuring loss rate, while high-volume
probing on all destinations via multiple paths would lead to signifi-
cant extra load. Probing has been successfully used for performance-
driven intra-domain routing in the past e.g., Contra [35]. Yet, such
techniques are impractical in our inter-domain context as they would
require one Vantage Point at each destination network.
Passive sampling: Gathering statistics on live traffic is possible
using sampling with sFlow [50] or NetFlow [23]. However, sampling
simply does not capture performance — measuring these metrics
requires capturing state across particular packets per flow (§4.2,
§4.3), not arbitrary random samples.
Mirroring: While mirroring captures the requisite information, it
does not scale and is inflexible [49]. To avoid congestion from mir-
rored traffic, one can rate-limit it, but this has limitations similar to
sampling: naive rate-limiting will discard arbitrary packets across
flows, impairing loss and delay estimation. Alternatively, one can
target mirroring more narrowly, with systems like Everflow [67] and
Stroboscope [60]. However, for continuous, high-coverage monitor-
ing across Internet prefixes and potential next-hops, such methods
would require a large and constantly changing set of monitoring rules
in network devices. Further, even if we could dynamically match on
a given number of flows per prefix and mirror only those (e.g., with
programmable switches to store flow identifiers), the mirrored traffic
will still be burdensome.

Performance-Driven Internet Path Selection SOSR ’21, October 11–12, 2021, Virtual Event, USA

As an illustration, consider an operator who wants to monitor the
performance for traffic sent to 1𝐾 destinations over only 2 alternative
next-hops and by mirroring only 50 flows per destination-next-hop
pair. At the mean flow rate observed in CAIDA traces [1], such a
design would require mirroring 25.7 Gbps of traffic. In contrast, by
aggregating measurements directly in the data plane, ROUTESCOUT

generates 108.4 kbps in performance reports, i.e., at 287,000× higher
efficiency.
End-system monitoring: Google [64] and Facebook [55] have
recently shared their solutions for path-aware routing. These ap-
proaches leverage their unique control: one end of the monitored
connections terminates at their own powerful servers, and the other
at a client application that also supplies performance data. This is
obviously infeasible for ASes.
Performance monitoring with programmable switches:
ROUTESCOUT exploits programmable switches that open up av-
enues unavailable to past efforts. To the best of our knowledge, no
prior work leveraging programmable switches fully addresses either
the sensing/monitoring or flexible reroutes needed for performance-
aware routing. Blink [34] detects outages, exploiting a failure-specific
property: failed paths deterministically drop every retransmission
of a packet. This property simplifies Blink’s design but doesn’t hold
for congested paths. Observe that Blink can only detect the second
retransmission of a packet, thus cannot measure loss rate or delay.
Lossradar [66] detects losses between pairs of deployed VPs. Mea-
suring per-path loss-rate though requires significant additional effort
i.e., adding per-path synchronized counters and mapping each lost
packet to a path. Also, Lossradar does not measure delay. In-band
Network Telemetry [43] provides intra-domain performance metrics.
Yet, similarly to Lossradar, INT requires control over multiple VPs
(one per destination). Dapper [31] detects performance problems
using one VP but requires bidirectional traffic, which is unrealistic
considering asymmetric routing. Sketches [42, 45, 46, 48, 63, 65]
offer aggregate estimates for packet/flow counts and size distribu-
tions, but do not capture latency and loss across routes. Finally,
Marple [49] could be used to implement performance monitoring.
Yet, implementing two levels of aggregating (per flow and & per
prefix and next hop) is not straightforward. Even assuming that is
possible, such a solution would not run in today’s programmable
switches and does not provide flexible rerouting.

2.1 Design constraints
The following constraints drive ROUTESCOUT’s design: :

R1 Respect routing policies: By default, ROUTESCOUT must
select amongst equally-preferred routes, replacing arbitrary
tie-breaks in BGP, and hot-potato routing.

R2 Ensure correctness and stability: ROUTESCOUT must prevent
loops and oscillatory behavior.

R3 Deployability: ROUTESCOUT should not require any coordi-
nation between ASes. A single AS deploying ROUTESCOUT

should also benefit from it without upgrading its entire network.
R4 Support asymmetric routing: Due to asymmetric routing, a

ROUTESCOUT switch may not see both directions of traffic, it
must, therefore, be able to estimate and improve performance
from one-way traffic.

Figure 1: 𝐴𝑆𝐴 and 𝐴𝑆𝐵 are providers for the other three ASes. 𝐴𝑆𝑋
has several legacy switches and a ROUTESCOUT-capable switch; not
all edge switches in 𝐴𝑆𝑋 run ROUTESCOUT; no coordination among
ROUTESCOUT-capable switches and/or legacy switches is required.

R5 Respect flow affinity: To avoid performance degradation due
to reordering of packets that could result from sending packets
of the same flow across different paths, ROUTESCOUT must
enforce flow-path affinity.

R6 Fit today’s switches: ROUTESCOUT should fit within the
scarce memory (dozens of MB at best [40]), restricted opera-
tions set (e.g., no floating points) and parallel memory accesses
available to existing programmable network hardware.

R7 Limit bandwidth usage: ROUTESCOUT must limit bandwidth
usage between the data and control planes, regardless of the
traffic rate and burstiness.

3 OVERVIEW
ROUTESCOUT is a closed-loop control system that dynamically
adapts how a stub AS forwards its outgoing traffic across multiple
policy-compliant routes according to observed performance and
operator’s objectives.

We illustrate ROUTESCOUT operations on a simple running ex-
ample (Fig. 1) in which a stub network, 𝐴𝑆𝑋 , routes traffic to mul-
tiple destinations, among which are 𝐴𝑆𝐶 and 𝐴𝑆𝐷. 𝐴𝑆𝑋 knows
two equally-preferred paths to reach both destinations through its
providers,𝐴𝑆𝐴 and𝐴𝑆𝐵, with whom𝐴𝑆𝑋 has 250 Gbps links. BGP’s
arbitrary tie-breaking selects 𝐴𝑆𝐴 as the next-hop for traffic to 𝐴𝑆𝐶
and 𝐴𝑆𝐵 for traffic to 𝐴𝑆𝐷 . Unbeknownst to 𝐴𝑆𝑋 , the path via 𝐴𝑆𝐵
has a much lower delay to 𝐴𝑆𝐶 and a slightly lower delay to 𝐴𝑆𝐷.
Only one (edge) devices of 𝐴𝑆𝑋 is programmable (R3).
Inputs To use ROUTESCOUT, the operator first specifies the pre-
fixes of interest4, together with their typical traffic demands.5 In
our example, 𝐴𝑆𝑋 ’s operator wants ROUTESCOUT to optimize for
destinations 𝐴𝑆𝐶 and 𝐴𝑆𝐷 , which drive 100 and 200 Gbps of traffic
respectively. Then, the operator specifies her objectives which in our
example are to (a) minimize the delay to both destinations; and (b)
load balance traffic across the next-hops, as long as the delay is not
increased by >10%. Note that ROUTESCOUT automatically learns
the policy-compliant next-hops from BGP (R1). ROUTESCOUT runs
independently on a single edge device 6 and does not need to coordi-
nate with other devices in or outside 𝐴𝑆𝑋 .

4few hundreds accounting for most of the traffic volume [27, 53]
5adequately accurate estimates, are easy to obtain §6.1.
6or multiple if there are multiple edges

SOSR ’21, October 11–12, 2021, Virtual Event, USA Maria Apostolaki, Ankit Singla, and Laurent Vanbever

Analysis
Control plane

Data plane
Outgoing
tra!c

Incoming
tra!c

reroute x%
of dstC

Actuation

…

Dst prefixes
Objectives
Demand

…

port 1
port 2

port n

Solver

Aggregators

Forwarding
SelectordstC loss delay

A

B

dstC loss delay

A

B

dstC loss delay
A
B

monitor x%
of dstC

Sensing

Loss & Delay
Monitor

Monitoring
Selector

Figure 2: ROUTESCOUT is a closed-loop control system with sensing,
analysis, actuation split across data and control planes.

System To satisfy the operator’s objectives, ROUTESCOUT imple-
ments a control loop which. . .

. . . directs traffic to alternative next-hops

. . . monitors performance across prefix-nexthop pairs

. . . computes an optimized traffic allocation to next-hops

. . . actuates appropriate traffic shifts in the data plane

ROUTESCOUT splits the above functions across its control- and
data-planes (Fig 2). The data plane collects and aggregates mea-
surements for the control plane to analyze (sensing). The control
plane decides which traffic to monitor and which traffic to reroute to
which next-hops (analysis). The data-plane receives and enforces
these decisions (actuation). Sensing and actuation operate at the
granularity of a “slot”, which we define as a small amount of traffic
to a particular prefix. The number of slots pertaining to each prefix
is determined by the proportion of its traffic volume. Operating at a
per-slot granularity provides measurement efficiency, improved sta-
bility and better resource utilization. For instance, slot-based routing
enables ROUTESCOUT to use paths that can not support all the traffic
for a given prefix. Coming back to our example,𝐴𝑆𝐷 receives twice
the traffic as 𝐴𝑆𝐶. Assuming a total of 3,000 slots, ROUTESCOUT

allocates 1,000 slots to 𝐴𝑆𝐶, and 2,000 slots to 𝐴𝑆𝐷 , with each slot
carrying around 0.1 Gbps of traffic.
Data plane: ROUTESCOUT data plane enforces the per-slot mon-
itoring and forwarding decisions made by the control plane. To
scalably monitor effectively satisfying R6, ROUTESCOUT exploits
TCP’s semantics together with probabilistic data structures to an-
alyze the relevant packets, aggregate the measurements (R7), and
actuate the corresponding forwarding decisions (§4). Note that, while
ROUTESCOUT relies on TCP, it only requires some TCP flows to ex-
ist per prefix, meaning it can still be useful even in QUIC-dominated
Internet. To flexibly forward, ROUTESCOUT uses two match-action
tables and a novel memory mapping scheme (§4.1), that allows
it to seamlessly adapt to BGP updates, prefix or policy changes,
consistently satisfying R1.

In our example, ROUTESCOUT reroutes 1 slot of traffic to each
destination via the alternative next-hop, namely 𝐴𝑆𝐵 (as decided
by the control plane) and monitors 4 slots one for each destination,
next-hop pair. As a result, aggregated loss and delay measurements
for each pair will be available to the control plane.

0
port 4 port 7 port 3

index 1 index 2 index 3
Forward prefX range [0,30) port 4

10030 70

Forward prefX range [30,70) port 7
Forward prefX range [70,100] port 3

Monitor prefX range [0,10) index 1
Monitor prefX range [30,40) index 2
Monitor prefX range [70,80) index 3

Hash
output

Rules

Forwarding Selector
Monitoring Selector

Figure 3: ROUTESCOUT uses two match-action tables to flexibly forward
the traffic according to the control-plane decisions and flexibly monitor
a given fraction of traffic per next hop.

Control plane: ROUTESCOUT control plane pulls aggregated data-
plane measurements and computes a new forwarding state based on
these and the operator objectives (§6.2) by formulating and solving
a linear optimization program(§6.2).

The main challenge in computing a new forwarding state is the
conflicting objectives that the operators often have. In our example,
the operator wants low delay (primary) and balanced load (sec-
ondary). These cannot be satisfied together as 𝐴𝑆𝐵 offers lower
delay for both destinations. This is a deliberately simple example:
since performance for 𝐴𝑆𝐶 improves more, 𝐴𝑆𝐷’s traffic should
be load balanced. But the problem becomes more complex as the
number of prefixes, next-hops, and objectives grows.

ROUTESCOUT moves to the computed forwarding state on a
slot-by-slot basis while tracking and reactive any performance degra-
dation to avoid heavily congesting remote bottlenecks potentially
violating R2. Slot-by-slot traffic shifts also reduce the risk of os-
cillations, even when multiple ROUTESCOUT systems co-exist by
adding randomness and therefore avoiding synchronization [30].

4 ROUTESCOUT DATA PLANE
ROUTESCOUT’s data plane uses compact data structures and ef-
ficient algorithms to flexibly forward traffic (§4.1) and accurately
measure delay (§4.2) and loss (§4.3). We also discuss the impact of
adversarial inputs and defenses (§4.4).

4.1 Selector stage
The Selector enforces the forwarding and monitoring decisions com-
municated by the control plane (§3) on a per-prefix basis. The for-
warding decisions correspond to the number of slots to forward to
given next hops, while the monitoring decisions correspond to the
number of slots to collect statistics for on given next hops.

The Selector implements slot-based forwarding and monitoring
by first hashing each incoming packet to a range [0, 𝑘] and then
using two match-action tables to identify sub-ranges [𝑖, 𝑗) of of the
range [0, 𝑘] that need to be monitored or forwarded to a given port.
The two tables, forwarding Selector and monitoring Selector, use
the same type of keys composed of: (i) a prefix; and (ii) a range [𝑖, 𝑗)
which identifies a subset of traffic. In the forwarding Selector table,
each key maps to a next-hop. In the monitoring Selector table, each
key maps to the index of a memory block of a table (aggregator
(§4.2-4.3)) in which the corresponding aggregated statistics will be

Performance-Driven Internet Path Selection SOSR ’21, October 11–12, 2021, Virtual Event, USA

stored. By adapting the contents of each table, the controller can
flexibly adapt the forwarding and monitoring behavior.
Example: Fig. 3 shows an example with a hash range of 0-100, and
three rules in each table. The rules are such that, in expectation, 30%
of packets (subrange 0–30) to prefix ‘prefX’ will be forwarded to
port 4. Additionally, 1/3 of these packets (subrange 0–10) will be
monitored before being forwarded, with the monitoring results stored
in index 1 of the aggregator. Observe that the flexible design of the
monitoring Selector table allows seamless adaptation to the system’s
dynamics. For example, if the BGP peer at port 4 withdraws prefX,
then the range of the green (second) rule in the forwarding Selector
could be expanded to include hash outputs 0-30, and the red (first)
rules in both the forwarding Selector and monitoring Selector will be
deleted. The index 1 of the aggregator used to store measurements
for this prefix-next-hop pair can also be reset and assigned to another
one.

4.2 Measuring delays
This component is responsible for accurately and scalably measuring
the delay of any flow belonging to one of the monitoring slots
enforced by the Selector. It relies upon a monitor and an aggregator.
The monitor estimates the delay observed by each flow by tracking
specific TCP metadata,7 while the aggregator accumulates these
statistics, which are eventually pulled by the control plane.
Estimating delay: To estimate the delay of a given flow in the
presence of asymmetric routing, the Delay monitor computes the
time elapsed between its TCP SYN and the first ACK (similarly to
[39]). While doing so means that ROUTESCOUT only measures delay
at connection setup, it also minimizes the noise from application-
level effects, which are likely to be more significant for later packets.
Moreover, using only SYN and ACK packets allows the Delay
monitor to operate with unidirectional traffic, thus accounting for
asymmetric routing (unlike prior work [20]). Observe that mirroring
SYN and ACK packets to a software component is unrealistically
costly, as all ACKs would need to be mirrored and matched to SYNs.
Moreover, measuring the delay between SYN and SYNACK would
require bidirectional traffic effectively violating R4.

Recording timestamps at scale is challenging. Indeed, simply
storing the SYN timestamp and the 5-tuple in a hash table does not
scale since it requires >100 bits per measurement. To address this
problem, we use a combination of two probabilistic data structures:
an Accumulator, for storing sums of timestamps at each index, and
a Counter for counting how many timestamps are in each sum in
the Accumulator. In essence, the Counter can be seen as a Counting
Bloom Filter [26], while the Accumulator is similar to an Invertible
Bloom Lookup Table [33]. We use XOR (⊕) as the sum operator
rather than a simple addition — while both + and ⊕ are recoverable
(given 𝐴 and 𝐴 ⊕ 𝐵 or 𝐴 + 𝐵, one can recover 𝐵), ⊕ cannot cause
overflows. Unlike previous works [45, 66] that send their full Bloom
filters to the controller to be decoded (incurring both compute and
bandwidth expense), we measure entirely in the data plane and only

7While ROUTESCOUT relies on TCP, it only requires some TCP flows to exist per prefix
for measuring the path’s performance. Yet, ROUTESCOUT’s decisions will also benefit
QUIC/UDP traffic.

(a) (b) (c)

Figure 4: Delay monitor:(a) SYNs of different flows (blue/above & yel-
low/below) increment different indexes; (b) The first ACK of the yellow
flow checks that all its indexes (3,5,8) are set, and reads the timestamp of
the yellow SYN from the reversible index 8; (c) The same ACK removes
the footprint of the yellow flow by XOR-ing T3 to the indexes of (3,5,8),
and decrementing their counters.

expose aggregated statistics to the control plane, which can pull
them asynchronously.8

Example, Fig. 4: As SYNs of different flows arrive (Fig. 4a), we
hash their 5-tuples with multiple hash functions, thus generating
multiple indexes. Here the yellow (lower) flow is hashed to (3, 5, 8),
and the blue (upper) flow to (1, 3, 6). Each entry of the Accumulator
in those indexes is ⊕-ed with the timestamp of the SYN. Additionally,
the Counter of each entry is incremented. Different SYNs can end
updating the same index, e.g., index 3 in Fig. 4a.

On receiving an ACK, we first compute the corresponding indexes
using the same hash functions. If all the corresponding Counter val-
ues are non-zero, then we know that the SYN timestamp is contained
in the Counter. In Fig. 4b, the ACK of the yellow flow arrives and
finds its indexes set. To get the timestamp of its corresponding SYN,
we need to find one index among the indexes to which the ACK is
hashed, whose value in the Counter is one. We will call this index
reversible. The same index in the Accumulator yields the timestamp
for this flow’s SYN, thus allowing us to compute its delay. In Fig. 4b,
the ACK finds a value equal to 1 in the index 8, namely the third of
the three indexes it is hashed to. Thus, the timestamp of the SYN is
at index 8 in the Accumulator.

To erase the footprint of a SYN from the Delay monitor, we decre-
ment each of the hashed indexes in the Counter, and ⊕ the recovered
timestamp with the sums at these indexes in the Accumulator. In
Fig. 4c, we illustrate the result of this process; observe that by ⊕-ing
the timestamp in each of the hashed indexes, the effect of the yellow
SYN vanishes.
Keeping the Delay monitor healthy: In the common case, the Delay
monitor stores some per-flow state only during the handshake as an
ACK removes the memory footprint created by the corresponding
SYN. This allows the Delay monitor to scale with the number of
flows regardless of their rate and duration. Still, a large number of
SYNs not followed by corresponding ACKs can pollute the Delay
monitor. This challenge can be easily addressed by keeping track of
the number of SYNs in the Delay monitor and not add new ones if
the filter has exceeded its capacity (number of elements it can store

8Also observe that lossradar [66] cannot measure loss from a single VP as we explain
in see § 2

SOSR ’21, October 11–12, 2021, Virtual Event, USA Maria Apostolaki, Ankit Singla, and Laurent Vanbever

1 1+1
2 0
3 1+1
4 2+1
5 0
6 0
7 0
8 0

S:5500
E:6500

1 2-1
2 0
3 2-1
4 3-1
5 0+1
6 0+1
7 0
8 0+1

S:6500
E:7500

1 3
2

3 1
4 2
5 1
6 1
7 0
8 1

S:4500
E:5500

1 1
2 0
3 1
4 2
5 0
6 0
7 0
8 0

1 1+1
2 0
3 1+1
4 2+1
5 0
6 0
7 0
8 0

S:5500
E:6500

1 2-1
2 0
3 2-1
4 3-1
5 0
6 0
7 0
8 0

S:6500
E:7500

1 1
2 0+1
3 1
4 2
5 0+1
6 0
7 0+1
8 0

S:7500
E:8500

ACC C

T2 1

T1 1

T2⊕ T3 2

ACC C

T1 1

T1⊕ T3 2

ACC C

T2 1

0 0

 T3 1

Stage1 Stage2 Stage3

SYN

Packet #1 Packet #3Packet #2

0

Figure 5: Here the Loss monitor sees three packet arrivals, 2 in-order
and 1 retransmit. The first, with sequence number S:5500 has the next
expected sequence number E:6500, and inserts the latter into the CBF
by incrementing the indexes corresponding to the E:6500 (blue indexes,
1, 3, and 4). The second packets finds its indexes (now yellow, 1, 3, and 4)
non-zero, thus knows it was expected. It cleans itself out, and inserts the
next expected packet (blue indexes, lower) . The third one, a retransmit,
finds one of its indexes (2) unset.

based on allocated memory, §7.2). Alternatively, the filter can be
reset periodically.
Aggregating statistics: The aggregator stores the delay measure-
ments per prefix-next-hop pair in an array with two values per index:
one for storing the sum of the delays and one for storing the num-
ber of delay measurements contained in the former. The control
plane can pull the measurements for a prefix-next-hop pair or for all
pairs at once and calculate the mean delay. For example, in Fig. 4c,
once the ACK has read the timestamp of its SYN it calculates the
time elapsed since then and updates the values in the index that
is mapped to its prefix and output port. The mapping between the
prefix-next-hop pair and the index in the aggregator is assigned by
the control plane and communicated via the monitoring Selector.
Thus, to monitor different prefixes or a different number of next
hops for some prefixes, one just changes this mapping instead of
re-allocating memory and needing recompilation (see example in
§4.1).

4.3 Measuring loss rates
The design and challenges of the loss measurement component
are similar to those for the delay, with some key distinctions. In
particular, to measure the loss rate, the monitor tracks the number of
retransmitted and regular packets, while the aggregator accumulates
the counts for each category. Similar to the Delay monitor, the
monitor only needs to observe one direction of each monitored flow
and only a few TCP flows to monitor.
Estimating loss rate: Measuring retransmissions at scale is chal-
lenging since one cannot simply store every packet and compare
new arrivals against the history to identify duplicates. Our solution,
somewhat surprisingly, requires only a few bits per flow at the cost
of one minor compromise: the inability to distinguish reordering
from retransmissions. Given that reordering also hurts TCP [15],
mistakenly accounting for it as loss is not a significant downside if
it is one at all.

Our solution keeps only one element per flow by exploiting TCP
semantics and the fact that, given a TCP packet 𝑝, one can compute
the next expected sequence number based on 𝑝 sequence number and
payload length. By storing this expected sequence number, we can

check whether the next packet is either a retransmitted or an out-of-
order packet. Instead of storing a 32-bit (expected) sequence number,
𝑒, we can insert it into a counting bloom filter (CBF), i.e., the same
data structure as our Counter for delay estimation. Since packets
across flows can share sequence numbers, we insert the concatena-
tion of the 5-tuple with the sequence number instead. Increasing the
length of the inserted value is immaterial, as the length of the hash
output is the same.

Whenever a packet with sequence number 𝑠 arrives, we check
the CBF for <5-tuple, 𝑠>: If the entry does not exist, the packet
is out-of-order or a retransmit. If the entry exists, the packet is in
order and we delete it from our filter by decrementing all the indexes
<5-tuple, 𝑠> hashes to. We then insert the next expected packet by
incrementing all the indexes that <5-tuple, 𝑠 + 𝑡𝑐𝑝.𝑙𝑒𝑛> hashes to.

Not all packets carry information regarding previous segments.
For instance, an ACK that does not carry any TCP data will be
followed by a packet of the same sequence number regardless of
whether the former was lost or not. Similarly, KEEPALIVE messages
(commonly used in Web traffic) contain an “unexpected” sequence
number: one byte less than the previously sent sequence number. To
avoid these issues, we only use packets with TCP payload. This does
not disrupt functionality, as for every non-zero-payload packet whose
subsequent sequence number we store, there will be a non-zero-
payload packet that can remove it, even if it comes after multiple
zero-payload ACKS.
Example, Fig. 5: In this example, we illustrate how 3 packets (the
last one being a retransmitted one) of a flow update the CBF. The
yellow (upper) box contains their sequence number, and the blue box
(lower), the sequence number of the expected packet. The first packet
inserts the fingerprint of the expected (second) one by incrementing
the values stored in the indexes that the expected sequence number
(concatenated with the 5-tuple of the flow) hashes to (blue indexes).
Thus, when the second packet arrives, it will find all hashed indexes
of its sequence number set (yellow indexes) and consider itself
expected. This is not true for the third packet, whose indexes are not
all set and is a retransmit.
Keeping the monitor healthy: Similar to the Delay monitor, the
Loss monitor contains one item per flow regardless of its rate as the
structure “cleans itself” with incoming packets. In particular, once a
flow terminates, the corresponding RST or a FIN removes the flow
permanently. Still, out-of-order and lost packets will, in most cases,
cause some packets to stay in the filter. However, this represents
a very small fraction of packets, as we discuss in §7.3. To avoid
overflowing the monitor, a counter in the data plane can keep track
of the number of flows using it. If the filter’s capacity is exceeded,
insertions are stalled until some of the flows terminate. Alternatively,
the filter can be reset periodically, as we show in §7.3.
Aggregating statistics: Similarly to the Delay aggregator, the ag-
gregator stores the number of expected and unexpected packets
observed per prefix and next hop.

4.4 Dealing with adversarial inputs
Like any data-driven system, ROUTESCOUT is prone to attacks in
which malicious endpoints or networks aim at faking signals in order
to influence its decisions. While possible and deserving a complete

Performance-Driven Internet Path Selection SOSR ’21, October 11–12, 2021, Virtual Event, USA

analysis in follow-up work, we briefly argue why such attacks on
ROUTESCOUT are hard to perform.

In order to influence ROUTESCOUT’s decisions, a malicious end-
point could try to: (i) send repeated packets to fake retransmissions;
(ii) send fake pairs of SYNs and ACKs with small/large timing dif-
ferences to fool the delay monitor or (iii) send fake FIN or RST
packets to prevent the loss monitor from measuring loss rates of
certain flows. We note two things. First, such adversarial endpoints
must be hosted within the stub AS, since ROUTESCOUT optimizes
exit traffic. Assuming basic anti-spoofing techniques are in place
(e.g. [56]), each endpoint has a single IP address to source traffic
from. As such, limiting the number of flows tracked per IP would be
sufficient to mitigate the attack. Second, ROUTESCOUT randomly as-
sociates a flow to a next hop, depending on a hash function. As such,
the attacker is equally likely to add noise to measurements of all next
hops, making targeting one next-hop difficult. ROUTESCOUT can
also defeat attempts to use traceroutes for probing such decisions by
randomly forwarding traceroutes to next hops.

Similarly, a malicious transit network can: (i) drop packets to
increase the loss rate; or (ii) drop/delay SYNs, SYN/ACK, or ACKs
to fool the delay monitor. While this is possible, we note that, by
doing so, malicious networks can only make their performance
worse, not better. As such, malicious networks can only push away
traffic, not attract more. Observe that an attacker cannot craft a
SYN/ACK packet for every SYN it receives to fake low latency as
she does not know the sequence number that the receiver will use
until the actual SYN/ACK packet is received.

Finally, attackers can also attempt to pollute ROUTESCOUT’s
data structures. An efficient way to mitigate such pollution is to
periodically reset the data structures, as we discuss in §7.
Fault tolerance In case of a data-plane failure ROUTESCOUT will
rebuild the monitoring state (kept in the monitors and aggregators)
from scratch and will retrieve the forwarding state (kept in the Selec-
tor) from the control plane. Thus, during the rebuilt ROUTESCOUT

will not be able to respond to new performance opportunities but
will instead use its previous decisions.

5 HARDWARE DESIGN
Our design needs modification to fit a real Protocol Independent
Switch Architecture (PISA) switch. We briefly explain the key con-
straints imposed by PISA and how we adapted the Delay and Loss
monitors accordingly. Our design takes up 10 physical pipeline
stages , and we have fully implemented it in a Barefoot Tofino
Wedge 100BF-32X.
PISA constraints: A packet traversing a PISA switch goes through
a pipeline of stages. Besides the limited memory and instruction
set, which our design already addresses, there are constraints on the
sequence of memory accesses [13, 62]. First, a packet cannot read or
write multiple memory addresses in the same memory block. Second,
memory blocks are tied to a single stage in the pipeline and can only
be accessed in it. This is to avoid contention from stages processing
different packets simultaneously. Similarly, accessing stages in a
different order or multiple times per packet is not possible.
Delay Monitor modifications: To access any Bloom Filter, includ-
ing those in the Delay Monitor, we need to access multiple indexes,
each corresponding to the output of a hash. For instance, in Fig. 4a,

1 1+1
2 0
3 1+1
4 2+1
5 0
6 0
7 0
8 0

S:5500
E:6500

1 2-1
2 0
3 2-1
4 3-1
5 0+1
6 0+1
7 0
8 0+1

S:6500
E:7500

1 3
2

3 1
4 2
5 1
6 1
7 0
8 1

S:4500
E:5500

1 1
2 0
3 1
4 2
5 0
6 0
7 0
8 0

1 1+1
2 0
3 1+1
4 2+1
5 0
6 0
7 0
8 0

S:5500
E:6500

1 2-1
2 0
3 2-1
4 3-1
5 0
6 0
7 0
8 0

S:6500
E:7500

1 1
2 0+1
3 1
4 2
5 0+1
6 0
7 0+1
8 0

S:7500
E:8500

ACC C

T2 1

T1 1

T2⊕ T3 2

ACC C

T1 1

T1⊕ T3 2

ACC C

T2 1

0 0

 T3 1

Stage1 Stage2 Stage3

SYN

Packet #1 Packet #3Packet #2

0

(a)

1 1+1
2 0
3 1+1
4 2+1
5 0
6 0
7 0
8 0

S:5500
E:6500

1 2-1
2 0
3 2-1
4 3-1
5 0+1
6 0+1
7 0
8 0+1

S:6500
E:7500

1 3
2

3 1
4 2
5 1
6 1
7 0
8 1

S:4500
E:5500

1 1
2 0
3 1
4 2
5 0
6 0
7 0
8 0

1 1+1
2 0
3 1+1
4 2+1
5 0
6 0
7 0
8 0

S:5500
E:6500

1 2-1
2 0
3 2-1
4 3-1
5 0
6 0
7 0
8 0

S:6500
E:7500

1 1
2 0+1
3 1
4 2
5 0+1
6 0
7 0+1
8 0

S:7500
E:8500

ACC C

T2 1

T1 1

T2⊕ T3 2

ACC C

T1 1

T1⊕ T3 2

ACC C

T2 1

0 0

 T3 1

Stage1 Stage2 Stage3

SYN

Packet #1 Packet #3Packet #2

0

(b)

Figure 6: (a) We implement the Delay monitor as a series of arrays; (b)
A packet can either check if it is expected or insert the next expected
packet in the Loss monitor.

the yellow SYN would need to access three indexes corresponding
to the yellow indexes. In PISA, though, one cannot concurrently
access multiple indexes of the same memory block. We thus divide
the two tables of the monitor into smaller chunks and constrain each
hash to index a single chunk as seen in Fig. 6a. Now, chunks reside
in different stages of the pipeline and can be accessed serially.

Serializing accesses creates another issue. Particularly, when an
ACK arrives, the monitor first needs to find out if it corresponds to
the first ACK of a flow whose SYN is in the Accumulator (Fig. 4b),
and if so, decrement all corresponding indexes in the Counter. For
this, the SYN will need to traverse all three pipeline stages in Fig. 6a
to check whether all corresponding indexes of the Counter are non-
zero. But after doing so, the packet cannot return to stage 1 and
decrease their values in the Counter. To address this, the monitor
recirculates packets corresponding to the first ACKs. Observe that
even if we could rely on SYNACK, which is impractical due to
asymmetric routing, we would still not be able to avoid recircula-
tion. Indeed, even if an incoming ACK knew upon arrival that the
timestamp of the corresponding SYN is in the structure, it will still
need to find a reversible index to read this timestamp and then ⊕ it
to all (previous) stages. As an illustration, in Fig. 6a, the reversible
index is in stage 3. When the packet reads it, it can no longer return
to stages 1 and 2, and ⊕ it to the corresponding indexes.
Loss Monitor modifications: Similarly here we need to split the
CBF into multiple chunks and stages. Recall that every incoming
packet needs to check if it is expected, remove itself, and insert the
next expected packet in the CBF. This results in two violations of
the PISA constraints.

First, a packet needs to access each memory chunk (in each stage)
in two different indexes, one corresponding to the output of itself,
whose value it needs to decrement, and one corresponding to the
next expected packet, whose value it needs to increase. Second, the
former access is conditioned on whether the packet is expected or
retransmission, something which will only be known after the packet
traversed all stages.

To address the first violation, we allow each packet one of the
two operations, either to remove itself if it is expected or to insert
the next expected one iteratively. To achieve this, we keep track of
the number of packets seen by each flow. Particularly, when a packet
arrives, it checks the number of non-zero-payload packets its flow
has already sent. If this number is even, as for S:5500 and S:7500
in Fig. 6b, then the packet will insert the next expected one in the
CBF. If the number is odd, as for S:6500 in Fig. 6b, the packet will

SOSR ’21, October 11–12, 2021, Virtual Event, USA Maria Apostolaki, Ankit Singla, and Laurent Vanbever

try to find its footprint in the CBF and remove it. We use a counting
bloom filter to keep track of the number of packets efficiently.

To address the second violation, we assume all packets to be
expected and recirculate packets that violate this assumption. In
more detail, on arrival, a packet whose flow has sent an odd number
of packets reads and decrements the indexes corresponding to it
in the CBF. If the packet was indeed expected, i.e., all read values
are non-zero (as for S:6500 in Fig. 6b), the packet increments the
Accumulator and leaves the device. If the packet was retransmission,
it is recirculated to re-increment the indexes it wrongly decremented.

6 ROUTESCOUT CONTROL PLANE
In this section, we describe ROUTESCOUT’s control plane and how
it leverages measurements from the data plane to improve forward-
ing decisions. This is a challenging problem as due to bandwidth
limitations, load-balancing preferences, or stability concerns traffic
cannot always be forwarded to the most performant route. We start
by describing the control-plane inputs (§6.1). We then explain how
it solves the induced optimization problem (§6.2).

We describe the simplest version of the control plane that would
enable performance-driven routing and support conflicting operator
objectives. To cover additional operational needs, this control plane
can be extended, for instance, to strengthen stability guarantees as
shown in [30].

6.1 Inputs
ROUTESCOUT triggers the Solver periodically giving as input a
description of the environment, a set of objectives, and optionally,
some additional constraints for each prefix, together with fresh per-
formance statistics.
Environment: The network environment includes topological, traf-
fic, and routing information. The former two are provided by the
operator and the latter by BGP. Topological information corresponds
to the set of direct next-hops and their link capacities. Traffic in-
formation consists of the set of prefixes that ROUTESCOUT should
optimize for, together with the volumes they drive. Routing informa-
tion corresponds to the set of next-hops that ROUTESCOUT can use
to route each prefix (obtained from routing tables and BGP policies).

Expecting traffic information is reasonable as important prefixes
are few and stable over time [27, 53]. The traffic volumes to these
prefixes can also be estimated accurately [38, 52]. Note that inaccu-
rate traffic volumes won’t affect ROUTESCOUT’s performance if the
direct links are not running at full capacity, which is true in most
stub ISPs. If that’s not the case, ROUTESCOUT might indeed not
find the optimal solution but will never deteriorate the performance
by moving traffic to a worse next hop.
Objectives: The operator can decide for each destination prefix
whether they want to: (i) optimize for the delay and/or loss; (ii) mini-
mize the number of traffic shifts necessary to meet the requirements;
or (iii) load-balance traffic by minimizing the difference between
the most- and the least-used next-hop. Linear combinations of these
or similar other objectives are easily implementable.

ROUTESCOUT also allows multiple objectives to be flexibly im-
plemented. To do so, the operator needs to express how important
each objective is by defining priorities and how valuable are the

differences among alternative forwarding states by defining toler-
ance levels. Objectives with lower priority will only be optimized
if there are multiple equally-preferred solutions, namely solutions
that differ from the optimal by no more than the tolerance level.
For example, an operator might want to balance the load across the
next-hops, as long as the delay difference between the best- and the
used next-hop is lower than 10%. The operator can communicate
this to ROUTESCOUT by assigning a high priority to delay with 10%
tolerance and a lower priority to load-balancing.

Operational constraints: ROUTESCOUT admits constraints of
two types: (i) those that limit the number of next-hops traffic can be
spread on; and (ii) those that define performance constraints. Con-
straining the maximum number of next-hops per destination might
be useful, for instance, to ease debugging. Performance constraints
are maximum loss/delay values that traffic for a certain destination
should experience. Defining such objectives is useful for meeting
Service Level Agreements (SLAs) or particular application require-
ments.
Data plane statistics: ROUTESCOUT periodically pulls measure-
ments of loss and delay aggregated per prefix and next-hop from the
respective aggregators.

6.2 Solver
The solver is responsible for synthesizing a forwarding state. To do
so, it formulates each of the operator’s inputs into a constraint or
an objective, creating a linear optimization problem. Since some
variables are integer, e.g., number of slots per prefix, our problem is
an Integer Linear Problem.
Problem statement: Let 𝑁 be a set of next-hops and 𝑃𝑟 the set of
destination prefixes to optimize for. Let 𝑃𝑎 ⊆ 𝑃𝑟 × 𝑁 be the set of
all pairs of destinations and equally-preferred next-hops (learned
by BGP). The goal is to find a mapping 𝐹𝑡 : 𝑃𝑎 → N, namely the
number of slots allocated to each pair (prefix, next-hop) at time 𝑡
such that it optimizes the operator’s objectives while adhering to the
environmental and operational constraints. We implement the Solver
using Gurobi [3].

7 EVALUATION
We evaluate ROUTESCOUT’s Delay monitor (§7.2), Loss monitor
(§7.3) and Solver (§7.4). For the monitors, we investigate the trade-
off between accuracy and memory footprint using real traffic traces
and our practical hardware design (§5). We find that, with 1 MB
of memory, the Delay monitor can accurately measure the delay of
hundreds of thousands of flows/sec. Moreover, the Loss monitor can
accurately measure the loss rate of 36𝐾 flows/sec with as little as
312KB of memory. For the Solver, we focus on runtime and show
that it computes forwarding states for thousands of destinations,
across tens of next hops and for various objectives, in less than a
second.

7.1 Methodology
To evaluate ROUTESCOUT’s monitors, we estimate the memory they
use as a function of their accuracy via both theoretical and practical
means. For the theoretical analysis, we assume perfectly behaved
TCP traffic (in-order, with expected semantics), with flow rates

Performance-Driven Internet Path Selection SOSR ’21, October 11–12, 2021, Virtual Event, USA

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30

N
on

-In
ve

rti
bi

lit
y

(%
)

Time (sec)

160K
320K
640K

(a) The probability of an ACK to decode its SYN’s
timestamp is >95% with a 1MB (640K elems) Delay
monitor of 2 hashes.

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 5 10 15 20 25 30

Lo
ss

 In
ac

cu
ra

cy

Time (sec)

160K
320K
640K

(b) Using 625KB (640K elems) and 2 hashes, the Loss
monitor calculates the loss rate with high accuracy.

Target 50th 70th 95th

moves 0.02 0.03 0.29
balance 0.03 0.04 0.4
performance 0.08 0.3 1.09
combined 0.03 0.05 1.23

(c) Runtime percentiles in seconds depend on the
complexity of the objective.

Figure 7

derived from real traces, and the original design as described in §4.2,
§4.3 with 9 hash functions9 and without any additional hardware
limitations. For the practical analysis, we use real traffic traces and
our hardware design for Tofino, with only 2 hash functions10.

For the theoretical analysis, we use two different directions of
CAIDA traces (CAIDA.A, CAIDA.B) collected at the Equinix-
Chicago monitor in March 2018 [1], and one from MAWI [21] from
January 2018. Together, these contain ∼6 billion packets with an
average rate ranging from 240-3200 Mbps. For the practical analysis,
we use the CAIDA.A trace, which is the noisiest, and feed it to the
monitors in 100 chunks of 30 seconds. While none of those traces
are from a stub network, this has no impact on our analysis, as we
are only interested in estimating accuracy and resource usage.

7.2 Delay monitor
Accuracy metric: We calculate the invertibility, namely the proba-
bility of a successfully computed delay. The delay between a SYN
and its corresponding ACK can be successfully computed if upon
arrival of the ACK, there is at least one index that contains only the
timestamp of the SYN. Other than the memory used, invertibility
depends on the number of concurrent delay measurements, the num-
ber of hash functions used, and the pollution of the structure due to
traffic noise, e.g., SYNs that are not followed by ACKs.
Theoretical analysis: In theory, invertibility is the inverse of the
probability of false positive in a regular Bloom Filter: the probability
of a SYN being ⊕ed to indexes that all contain other timestamps
is the same as finding all hash outputs set in a regular Bloom Fil-
ter during a lookup. We calculate the memory requirements for an
invertibility of 99.9% (false positive rate in BF of 0.1%) using the
analytical formula for optimal Bloom Filter design [16]. For these
calculations, we assume that each handshake completes in <1 sec,
and that ROUTESCOUT needs to monitor all flows in each trace. The
results are summarized in Table 1. The Delay monitor would need
12.9K-781.5K elements, corresponding to 6KB–381KB memory as-
suming an implementation over an array of 16-bit values using 9
hash functions.
Practical analysis: In practice, the filter is gradually polluted by
SYNs that are not followed by ACKs. This can happen, e.g., under
SYN attacks, or when hosts try to reach an offline server. Such noise

9We chose 9 following the Bloom Filters heuristic [16].
10More engineering effort might allow implementation of more hashes.

Trace SYNs/s Elements Delay M Flows/s Elements Loss M

CAIDA.A 3.8K 54.2K 26KB 36.8K 529.1K 1MB
CAIDA.B 54.4K 781.5K 381KB 233.8K 3361.3K 6MB
MAWI 899 12.9K 6KB 3.3K 47.8K 93KB

Table 1: Delay monitor and Loss monitor would combined need 6.4M to
monitor as many flows/s as there are in the CAIDA.B trace.

is common in our traces: in the noisiest trace (which we use for this
evaluation), only 40% of the SYNs are followed by ACKs. Fig. 7a
shows the median, max, and min non-invertibility probability as a
function of time using {160K, 320K, 640K} elements in the data
structure. As expected, the failure probability increases with time as
the filter gets polluted. Still, ROUTESCOUT is very efficient. Indeed,
a Delay monitor with only 320K elements has an invertibility of
>90%. Another interesting insight is that we can do this with less
memory if we periodically reset our Delay monitor, e.g., with only
160K elements (312KB), we get the same >90% invertibility if we
reset it every 15 seconds.

7.3 Loss monitor
Accuracy metric: We compare the measured loss per flow to its
actual loss rate. ROUTESCOUT’s accuracy is affected by false pos-
itives: a retransmitted packet can be considered expected (instead
of correctly being assessed as unexpected) and thus not counted
towards loss, if all the indexes it hashes to are set. As the Loss moni-
tor is a CBF, its false-positive rate depends on the memory and the
number of hashes used.
Theoretical analysis: We use the same method as for the Delay
monitor, to calculate memory requirements for achieving a false
positive rate of <0.1%. The results are summarized in Table 1. The
Loss monitor would need 47.8K–3.4M elements depending on the
number of flows/sec in the trace. This corresponds to 93K–6M mem-
ory if the Loss monitor is implemented as an array of 4-bit values
with 9 hash functions.
Practical analysis: In practice, the Loss monitor’s accuracy is deteri-
orated by three more factors. First, out-of-order packets are not only
classified as losses but also pollute the structure as explained in §4.3.
Second, flows terminating unexpectedly (i.e., without FIN/RST) re-
main in the monitor until it is reset, decreasing its effective capacity.

SOSR ’21, October 11–12, 2021, Virtual Event, USA Maria Apostolaki, Ankit Singla, and Laurent Vanbever

Third, the Loss monitor can miss some loss events due to the com-
promise for PISA constraints: it only checks whether every other
non-zero-payload packet has the right sequence number.

Despite these impairments, ROUTESCOUT is, in practice, very
accurate. Fig. 7b shows the (max, min, and median across all runs)
70th percentile of difference across all flows between their estimated
loss rate and the ground truth reported by tshark. We plot 70th as
lower percentiles have zero error and thus unsuitable for studying
the memory trade-off. We find that a Loss monitor with only 640K
elements (625KB assuming 4bits/element) is almost perfect for 30
sec. Like the Delay monitor, resetting every 15 sec would allow
smaller implementations to be similarly accurate.

7.4 Solver runtime
We investigate the influence of each parameter of the operational
environment (§6.2) on the Solver’s runtime.
Methodology: We evaluate runtime: the time the Solver takes to
compute a forwarding state; across several scenarios with different
numbers of prefixes, next-hops, and slots. For each scenario, we
run >5500 experiments with four different objectives: performance,
balance across next-hops, minimal number of steps, and all of these
combined. We fix all but one of the three parameters (i.e., prefixes,
next-hops, and slots) to default values. By default, we set the number
of prefixes to 800 (corresponding to 80% of the traffic of CAIDA.A);
the number of next-hops to 3, and the number of slots to be 200
(corresponding to a minimum traffic-shift granularity of 0.5% of the
traffic per prefix). We report the median, 70th, and 95th percentile
runtime as a function of each parameter in Fig. 8. We also group our
experiments by objective and report median, 70th, and 95th percentile
runtime in Table 7c.
Key results: Fig 8 shows that the 95th-percentile runtime is 0.25 sec
for 22 slots per prefix (left), 0.1 sec for 10 next-hops per prefix
(center), and 0.05 sec for 2K prefixes (right). As Table 7c shows, the
runtime also depends on the complexity of the objective. The most
efficient objective to solve for is minimizing the number of shifted
slots, while the least efficient one, unsurprisingly, is the combination
of all objectives. In nearly all cases, the Solver finishes in under one
second.

8 CASE STUDIES
We validate ROUTESCOUT’s practicality and effectiveness in three
steps. First, we prove that it is deployable by running it on a real
testbed composed of Barefoot Tofino [5] switches. We then measure
the benefits of running ROUTESCOUT for 10 stub ASes. Finally,
we highlight the effectiveness of ROUTESCOUT in a larger testbed
using P416.

8.1 Hardware testbed
We implement our hardware design (§5) on a Barefoot Tofino Wedge
100BF-32X in which a control process pulls statistics every 1 second
and updates routing accordingly.

Our testbed (Fig. 9a) has two Tofinos (𝑆𝑊 1 and 𝑆𝑊 2) and two
servers (𝑠1 and 𝑠2). 𝑆𝑊 1–𝑆𝑊 2 are connected to each other with
two links via ports 1 and 2, creating two 𝑠1–𝑠2 paths. 𝑆𝑊 1 runs
ROUTESCOUT and splits traffic to 𝑠2 across the two links. 𝑆𝑊 2

randomly drops a configurable portion of incoming packets matching
on a specified ingress port.

We partition traffic to 𝑠2 into 16 slots. Thus, the minimum portion
of traffic ROUTESCOUT can reroute/monitor is 1/16 in this config-
uration. (More generally, anything from 1

2 − 1
232 is feasible.) We

assume the operator wants to minimize loss for traffic to 𝑠2. We also
assume that the default next-hop for traffic to 𝑠1 is port 1, i.e., the
green (top) path. ROUTESCOUT thus routes most traffic (15/16)
on it, using one slot to probe the other path. We use 81 iperf [37]
client-servers pairs to generate 𝑠1 → 𝑠2 traffic. At time 𝑡1 = 7 sec,
we introduce 0.8% loss on the top path using 𝑆𝑊 2.

Fig. 9b and Fig. 9c show how the flow-count and traffic at each
port evolve. Initially, port 1 sees 76 flows (4.3 Gbps) while port
2 sees only 5 flows (0.4 Gbps). At 𝑡1, loss starts, and bandwidth
across the green path drops as TCP reacts. This is quickly detected
(< 2𝑠𝑒𝑐) by ROUTESCOUT, which installs new rules to shift almost
all the traffic to port 2. ROUTESCOUT could be made faster by (for
instance) increasing the polling rate for statistics. A pure data-plane
system that forgoes a controller will, of course, be even faster but
lose ROUTESCOUT’s flexibility in terms of optimization goals and
its stability.

8.2 Achievable gains in the wild
Quantifying the gains provided by ROUTESCOUT is challenging
for three main reasons: (i) one needs to control egress routing of
the tested stub AS; (ii) multiple stub ASes need to be tested for
the results to be meaningful; (iii) running the full system using
previously collected traces is problematic as the traffic is not respon-
sive to ROUTESCOUT’s operations (e.g. a lost packet will not be
retransmitted).

To circumvent those limitations, we leverage (i) the RIPE ATLAS
platform [4] which gives us access to multiple measurement probes
in many stub ASes all over the world; and (ii) the fact that some
stubs host multiple probes whose traffic exits via different next-hops
ASes due to hot potato routing, therefore taking different paths.

In particular, we measure the delay difference among paths with
the same pair of source-AS and destination IP but different first
next-hop. We believe this measurement is a reasonable proxy for
the RTT improvement achievable with ROUTESCOUT. Every 5
minutes,11 we perform 2 concurrent traceroutes from 2 probes in
the same AS, to each of the top-50 Alexa [6] destinations and report
the difference in median delay observed by the two probes per pair
of destination and 5-min interval iff they used a different next hop.
We perform this experiment for 24 hours and repeat it for 10 stub
ASes.12 Fig. 10 shows the CDF of potential RTT improvement. Each
line corresponds to a particular stub AS.

We find that 9/10 ASes could improve their RTTs in more than
35% of the cases by a 5–99% For 6 ASes, RTT would improve by
more than 21% in at least 20% of the cases, while for 2 of them, RTT
improvement would exceed 97%. Observe that the benefits shown
in Fig. 10 can only be achieved by ROUTESCOUT but not by CDNs
who can only optimize paths from their PoPs to users/stubs.

11The maximum probing frequency allowed by RIPE ATLAS.
12The selection of ASes was made such that there is at least one pair of probes 𝑎,
𝑏 in AS𝑋 ; which are geographically close to each other; and use different ASes, say
𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝐴 and𝑛𝑒𝑥𝑡𝐻𝑜𝑝𝐵 to reach the same destination prefix say 𝑝 , which is among
the 50 most popular Web destinations.

Performance-Driven Internet Path Selection SOSR ’21, October 11–12, 2021, Virtual Event, USA

 0
 1
 2
 3
 4
 5
 6

 1 10 100 1000 10000 100000 1x106 1x107 1x108

 R
un

 T
im

e
(s

ec
)

 # Slots

p50
p70
p95

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 1 10 100

 R
un

tim
e

(s
ec

)

 # Next Hops

p50
p70
p95

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 100 1000 10000

 R
un

tim
e

(s
ec

)

Prefixes

p50
p70
p95

Figure 8: ROUTESCOUT is fast even when run with an increasing number of slots, next hops and destinations.

RouteScout
Drops

S1 S2SW1 SW2

(a) Two Tofinos set up two 𝑠1-𝑠2 paths. 𝑆𝑊 1 runs
ROUTESCOUT and 𝑆𝑊 2 introduces loss in between
the experiment.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 2 4 6 8 10 12 14 16 18 20

Fl
ow

 N
um

be
r

Time (s)

port 1
port 2

(b) Number of flows routed via each alternative port
changes after the increased loss is detected. Traffic
shift takes <2𝑠𝑒𝑐 .

 0

 1

 2

 3

 4

 5

 2 4 6 8 10 12 14 16 18 20

R
at

e
(G

B
ps

)

Time (s)

port 1
port 2

(c) Bandwidth drop in port 1 is visible immedi-
ately after the loss is introduced and is clearer after
ROUTESCOUT reroutes traffic.

Figure 9

Figure 10: CDF of the relative RTT improvement each source AS should
expect from delay-aware routing. 8 of the 10 ASes could improve the
latency of at least 20% of the cases by 12–99%.

8.3 ROUTESCOUT in a network
We implement ROUTESCOUT in the P4 behavioral model (BMV2) [7]
using ∼900 lines of P416. We emulate a network scenario with a
stub that runs ROUTESCOUT and 10 destination networks towards
each of which it has 3 next-hops. The network scenario has 14 ASes,
and 33 10 Mbps AS-to-AS links. The end-end delays are configured
based on the latency differences observed in our RIPE experiments
(§8.2). We assume that BGP has selected the first next hop for all
prefixes. The goal of ROUTESCOUT’s operator is to minimize the
delay.

We use D-ITG [17] to create 10 TCP flows of constant rate to
each of the destinations, resulting in 0.2 Mbps of aggregated traffic.
We configure ROUTESCOUT to use 50 slots in total; as all prefixes

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

C
D

F

Relative RTT improvement (%)

Figure 11: CDF of % delay improvement with ROUTESCOUT.

drive the same traffic volume, each gets 5 slots. We run the experi-
ment 10 times and report (Fig. 11) the CDF of improvement on the
average end-end delay compared with the initial state. We see that
ROUTESCOUT improves the delay in half of the cases by 32% or
more.

9 CONCLUSION
ROUTESCOUT is a modern answer to the old problem of performance-
aware Internet routing. Leveraging the capabilities of programmable
switches, ROUTESCOUT continually and accurately monitors path
performance at scale with low compute, memory, and bandwidth
footprints. Based on these measurements, ROUTESCOUT control
plane then reroutes traffic along policy-equivalent paths, fulfilling

SOSR ’21, October 11–12, 2021, Virtual Event, USA Maria Apostolaki, Ankit Singla, and Laurent Vanbever

the operators’ objectives. ROUTESCOUT is BGP-compatible, deploy-
able without coordination across ASes and without network-wide
updates, improving Internet routing one switch at a time.

10 ACKNOWLEDGMENTS
We thank the NSG Group for their support and feedback during this
work. We also thank the anonymous reviewers for their insightful
comments and suggestions. This work was supported by a Swiss
National Science Foundation Grant (“Data-Driven Internet Routing”,
#200021- 175525).

REFERENCES
[1] [n.d.]. Caida Anonymized Internet Traces 2015. http://www.caida.org/data/

passive/passive_2015_dataset.xml.
[2] [n.d.]. CAIDA Macroscopic Internet Topology Data Kit. https://www.caida.org/

data/internet-topology-data-kit/.
[3] [n.d.]. Gurobi Solver. http://www.gurobi.com/.
[4] [n.d.]. RIPE NCC. RIPE Atlas. https://atlas.ripe.net.
[5] 2018. Barefoot. Barefoot Tofino, World’s fastest P4-programmable Ether- net

switch ASICs. https://barefootnetworks.com/products/brief-tofino/.
[6] 2018. The top 500 sites on the web. https://www.alexa.com/topsites.
[7] 2019. P4 behavioral model. https://github.com/p4lang/behavioral-model.
[8] Aditya Akella, Bruce Maggs, Srinivasan Seshan, and Anees Shaikh. 2008. On the

performance benefits of multihoming route control. IEEE/ACM Transactions on
Networking (TON) 16, 1 (2008), 91–104.

[9] Aditya Akella, Bruce Maggs, Srinivasan Seshan, Anees Shaikh, and Ramesh
Sitaraman. 2003. A measurement-based analysis of multihoming. In Proceedings
of the 2003 conference on Applications, technologies, architectures, and protocols
for computer communications. ACM, 353–364.

[10] Aditya Akella, Srinivasan Seshan, and Anees Shaikh. 2004. Multihoming Perfor-
mance Benefits: An Experimental Evaluation of Practical Enterprise Strategies..
In USENIX Annual Technical Conference, General Track. 113–126.

[11] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. 2002.
Resilient overlay networks. ACM SIGCOMM Computer Communication Review
32, 1 (2002), 66–66.

[12] Todd Arnold, Matt Calder, Italo Cunha, Arpit Gupta, Harsha V. Madhyastha,
Michael Schapira, and Ethan Katz-Bassett. 2019. Beating BGP is Harder than We
Thought. In ACM HotNets.

[13] Ran Ben-Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich. 2018. Efficient
Measurement on Programmable Switches Using Probabilistic Recirculation. 2018
IEEE 26th International Conference on Network Protocols (ICNP) (Sep 2018).
https://doi.org/10.1109/icnp.2018.00047

[14] Debopam Bhattacherjee, Waqar Aqeel, Ilker Nadi Bozkurt, Anthony Aguirre,
Balakrishnan Chandrasekaran, P Godfrey, Gregory Laughlin, Bruce Maggs, and
Ankit Singla. 2018. Gearing up for the 21st century space race. In ACM HotNets.

[15] Ethan Blanton and Mark Allman. 2002. On making TCP more robust to packet
reordering. ACM SIGCOMM Computer Communication Review 32, 1 (2002),
20–30.

[16] Burton H. Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable
Errors. Commun. ACM 13, 7 (July 1970), 422–426. https://doi.org/10.1145/
362686.362692

[17] Alessio Botta, Alberto Dainotti, and Antonio Pescapè. 2012. A tool for the
generation of realistic network workload for emerging networking scenarios.
Computer Networks 56, 15 (2012), 3531–3547.

[18] Alan Boyle. 2019. Amazon to offer broadband access from orbit with 3,236-
satellite ‘Project Kuiper’ constellation. https://www.geekwire.com/2019/amazon-
project-kuiper-broadband-satellite/.

[19] Fangfei Chen, Ramesh K Sitaraman, and Marcelo Torres. 2015. End-user mapping:
Next generation request routing for content delivery. ACM SIGCOMM Computer
Communication Review 45, 4 (2015), 167–181.

[20] Xiaoqi Chen, Hyojoon Kim, Javed M Aman, Willie Chang, Mack Lee, and Jennifer
Rexford. 2020. Measuring tcp round-trip time in the data plane. In Proceedings of
the Workshop on Secure Programmable Network Infrastructure. 35–41.

[21] Kenjiro Cho, Koushirou Mitsuya, and Akira Kato. 2000. Traffic Data Repository
at the WIDE Project. In Proceedings of the Annual Conference on USENIX Annual
Technical Conference (San Diego, California) (ATEC ’00). USENIX Association,
Berkeley, CA, USA, 51–51. http://dl.acm.org/citation.cfm?id=1267724.1267775

[22] Cisco Performance Routing (PfR). [n.d.]. https://www.cisco.com/c/en/us/products/
ios-nx-os-software/performance-routing-pfr/index.html.

[23] Benoit Claise. 2004. Cisco Systems NetFlow Services Export Version 9. RFC
3954 (Informational). http://www.ietf.org/rfc/rfc3954.txt.

[24] D. Clark, S. Bauer, K. Claffy, A. Dhamdhere, B. Huffaker, W. Lehr, and M. Luckie.
2014. Measurement and Analysis of Internet Interconnection and Congestion. In

Telecommunications Policy Research Conference (TPRC).
[25] Anwar Elwalid, Cheng Jin, Steven Low, and Indra Widjaja. 2001. MATE: MPLS

adaptive traffic engineering. (2001).
[26] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. 2000. Summary Cache:

A Scalable Wide-area Web Cache Sharing Protocol. IEEE/ACM Trans. Netw. 8, 3
(June 2000), 281–293. https://doi.org/10.1109/90.851975

[27] Wenjia Fang and Larry Peterson. 1999. Inter-AS traffic patterns and their im-
plications. In Seamless Interconnection for Universal Services. Global Telecom-
munications Conference. GLOBECOM’99.(Cat. No. 99CH37042), Vol. 3. IEEE,
1859–1868.

[28] Riot Games. 2016. Fixing the Internet for Real-time Applications. https://
engineering.riotgames.com/news/fixing-internet-real-time-applications-part-ii.

[29] Lixin Gao and Jennifer Rexford. 2001. Stable internet routing without global
coordination. IEEE/ACM Trans. Netw. 9 (December 2001), 681–692. Issue 6.
https://doi.org/10.1109/90.974523

[30] Ruomei Gao, Constantinos Dovrolis, and Ellen W Zegura. 2006. Avoiding Oscil-
lations Due to Intelligent Route Control Systems.. In INFOCOM.

[31] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. 2017. Dapper: Data
Plane Performance Diagnosis of TCP. In Proceedings of the Symposium on SDN
Research (Santa Clara, CA, USA) (SOSR ’17). ACM, New York, NY, USA, 61–74.
https://doi.org/10.1145/3050220.3050228

[32] David K Goldenberg, Lili Qiuy, Haiyong Xie, Yang Richard Yang, and Yin Zhang.
2004. Optimizing cost and performance for multihoming. In ACM SIGCOMM
Computer Communication Review, Vol. 34. ACM, 79–92.

[33] Michael T. Goodrich and Michael Mitzenmacher. 2011. Invertible Bloom Lookup
Tables. CoRR abs/1101.2245 (2011). http://arxiv.org/abs/1101.2245

[34] Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto Dainotti,
Stefano Vissicchio, and Laurent Vanbever. 2019. Blink: Fast connectivity recovery
entirely in the data plane. In 16th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 19). 161–176.

[35] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rexford, and David Walker.
2020. Contra: A Programmable System for Performance-aware Routing. In 17th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
20). USENIX Association, Santa Clara, CA, 701–721. https://www.usenix.org/
conference/nsdi20/presentation/hsu

[36] IP SLAs Configuration Guide. Cisco IOS. [n.d.]. https://www.cisco.
com/c/en/us/td/docs/ios-xml/ios/ipsla/configuration/15-mt/sla-15-mt-
book/sla_icmp_echo.html.

[37] iPerf - The ultimate speed test tool for TCP, UDP and SCTP. [n.d.]. https://iperf.fr/.
[38] Muhammad Faisal Iqbal, Muhammad Zahid, Durdana Habib, and Lizy Kurian

John. 2019. Efficient Prediction of Network Traffic for Real-Time Applications.
Journal of Computer Networks and Communications 2019 (2019).

[39] Hao Jiang and Constantinos Dovrolis. 2002. Passive Estimation of TCP Round-
trip Times. SIGCOMM Comput. Commun. Rev. 32, 3 (July 2002), 75–88. https:
//doi.org/10.1145/571697.571725

[40] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores
with Fast In-Network Caching. In Proceedings of the 26th Symposium on Oper-
ating Systems Principles (Shanghai, China) (SOSP ’17). ACM, New York, NY,
USA, 121–136. https://doi.org/10.1145/3132747.3132764

[41] Srikanth Kandula, Dina Katabi, Bruce Davie, and Anna Charny. 2005. Walking the
tightrope: Responsive yet stable traffic engineering. In ACM SIGCOMM Computer
Communication Review, Vol. 35. ACM, 253–264.

[42] Jorma Kilpi. 2008. IP-availability and SLA. In Proc. of the International Euro-NF
Workshop on Traffic Management and Traffic Engineering for the Future Internet.

[43] Changhoon Kim, Anirudh Sivaraman, Naga Praveen Katta, Antonin Bas, Ad-
vait Dixit, and Lawrence J Wobker. 2015. In-band Network Telemetry via Pro-
grammable Dataplanes.

[44] Tobias Klenze, Giacomo Giuliari, Christos Pappas, Adrian Perrig, and David
Basin. 2018. Networking in Heaven as on Earth. In ACM HotNets.

[45] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. FlowRadar: A
Better NetFlow for Data Centers. In NSDI. USENIX Association, Santa Clara, CA,
USA. https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/
li-yuliang

[46] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. 2016. One sketch to rule them all: Rethinking network flow monitoring
with univmon. In Proceedings of the 2016 ACM SIGCOMM Conference. ACM,
101–114.

[47] Pascal Mérindol, Virginie Van den Schrieck, Benoit Donnet, Olivier Bonaventure,
and Jean-Jacques Pansiot. 2009. Quantifying Ases Multiconnectivity Using
Multicast Information. In Proceedings of the 9th ACM SIGCOMM Conference
on Internet Measurement (Chicago, Illinois, USA) (IMC ’09). Association for
Computing Machinery, New York, NY, USA, 370–376. https://doi.org/10.1145/
1644893.1644937

[48] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. 2014.
DREAM: dynamic resource allocation for software-defined measurement. In
ACM SIGCOMM Computer Communication Review, Vol. 44. ACM, 419–430.

http://www.caida.org/data/passive/passive_2015_dataset.xml
http://www.caida.org/data/passive/passive_2015_dataset.xml
https://www.caida.org/data/internet-topology-data-kit/
https://www.caida.org/data/internet-topology-data-kit/
http://www.gurobi.com/
https://atlas.ripe.net
https://barefootnetworks.com/products/brief-tofino/
https://www.alexa.com/topsites
https://github.com/p4lang/behavioral-model
https://doi.org/10.1109/icnp.2018.00047
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://www.geekwire.com/2019/amazon-project-kuiper-broadband-satellite/
https://www.geekwire.com/2019/amazon-project-kuiper-broadband-satellite/
http://dl.acm.org/citation.cfm?id=1267724.1267775
https://www.cisco.com/c/en/us/products/ios-nx-os-software/performance-routing-pfr/index.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/performance-routing-pfr/index.html
http://www.ietf.org/rfc/rfc3954.txt
https://doi.org/10.1109/90.851975
https://engineering.riotgames.com/news/fixing-internet-real-time-applications-part-ii
https://engineering.riotgames.com/news/fixing-internet-real-time-applications-part-ii
https://doi.org/10.1109/90.974523
https://doi.org/10.1145/3050220.3050228
http://arxiv.org/abs/1101.2245
https://www.usenix.org/conference/nsdi20/presentation/hsu
https://www.usenix.org/conference/nsdi20/presentation/hsu
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipsla/configuration/15-mt/sla-15-mt-book/sla_icmp_echo.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipsla/configuration/15-mt/sla-15-mt-book/sla_icmp_echo.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipsla/configuration/15-mt/sla-15-mt-book/sla_icmp_echo.html
https://iperf.fr/
https://doi.org/10.1145/571697.571725
https://doi.org/10.1145/571697.571725
https://doi.org/10.1145/3132747.3132764
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/li-yuliang
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/li-yuliang
https://doi.org/10.1145/1644893.1644937
https://doi.org/10.1145/1644893.1644937

Performance-Driven Internet Path Selection SOSR ’21, October 11–12, 2021, Virtual Event, USA

[49] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat
Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. 2017.
Language-directed hardware design for network performance monitoring. In Pro-
ceedings of the Conference of the ACM Special Interest Group on Data Communi-
cation. ACM, 85–98.

[50] Peter Phaal, Sonia Panchen, and Neil McKee. 2001. InMon Corporation’s sFlow:
A Method for Monitoring Traffic in Switched and Routed Networks. RFC 3176
(Informational). http://www.ietf.org/rfc/rfc3176.txt.

[51] Y. Rekhter, T. Li, and S. Hares. 2006. A Border Gateway Protocol 4 (BGP-4).
RFC 4271 (Draft Standard). http://www.ietf.org/rfc/rfc4271.txt

[52] Aimin Sang and San qi Li. 2000. A predictability analysis of network traffic.
Proceedings IEEE INFOCOM 2000. Conference on Computer Communications.
Nineteenth Annual Joint Conference of the IEEE Computer and Communications
Societies (Cat. No.00CH37064) 1 (2000), 342–351 vol.1.

[53] Nadi Sarrar, Steve Uhlig, Anja Feldmann, Rob Sherwood, and Xin Huang. 2012.
Leveraging Zipf’s law for traffic offloading. ACM SIGCOMM Computer Commu-
nication Review 42, 1 (2012), 16–22.

[54] Stefan Savage, Thomas Anderson, Amit Aggarwal, David Becker, Neal Cardwell,
Andy Collins, Eric Hoffman, John Snell, Amin Vahdat, Geoff Voelker, and John
Zahorjan. 1999. Detour: Informed Internet routing and transport. IEEE Micro
(1999).

[55] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett, Harsha V.
Madhyastha, Italo Cunha, James Quinn, Saif Hasan, Petr Lapukhov, and Hongyi
Zeng. 2017. Engineering Egress with Edge Fabric: Steering Oceans of Content to
the World. In ACM SIGCOMM.

[56] Stephanie AC Schuckers. 2002. Spoofing and anti-spoofing measures. Information
Security technical report 7, 4 (2002), 56–62.

[57] SpaceX Starlink. [n.d.]. https://www.spacex.com/webcast.
[58] Neil Spring, Ratul Mahajan, and Thomas Anderson. 2003. The causes of path

inflation. In Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications. ACM, 113–124.

[59] Hongsuda Tangmunarunkit, Ramesh Govindan, and Scott Shenker. 2001. Internet
path inflation due to policy routing. In ITCom 2001: International Symposium on
the Convergence of IT and Communications. International Society for Optics and
Photonics, 188–195.

[60] Olivier Tilmans, Tobias Bühler, Ingmar Poese, Stefano Vissicchio, and Laurent
Vanbever. 2018. Stroboscope: Declarative Network Monitoring on a Budget.
In 15th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 18). USENIX Association, Renton, WA. https://www.usenix.org/
conference/nsdi18/presentation/tilmans

[61] Vytautas Valancius, Bharath Ravi, Nick Feamster, and Alex C Snoeren. 2013.
Quantifying the benefits of joint content and network routing. In ACM SIGMET-
RICS Performance Evaluation Review, Vol. 41. ACM, 243–254.

[62] Chen Xiaoqi, Feibish Shir, Landau, Rexford Yaron, Koral andJ ennifer, and Rot-
tenstreich Ori. 2018. Catching the Microburst Culprits with Snappy. https:
//www.cs.princeton.edu/~jrex/papers/snappy18.pdf.

[63] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig. 2018. Elastic sketch: Adaptive and fast network-
wide measurements. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication. ACM, 561–575.

[64] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett, Matthew Holli-
man, Gary Baldus, Marcus Hines, Taeeun Kim, Ashok Narayanan, Ankur Jain,
Victor Lin, Colin Rice, Brian Rogan, Arjun Singh, Bert Tanaka, Manish Verma,
Puneet Sood, Mukarram Tariq, Matt Tierney, Dzevad Trumic, Vytautas Valancius,
Calvin Ying, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat. 2017. Taking
the Edge off with Espresso: Scale, Reliability and Programmability for Global
Internet Peering. In ACM SIGCOMM.

[65] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined Traffic Measure-
ment with OpenSketch. In Presented as part of the 10th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 13). 29–42.

[66] Li Yuliang, Miao Rui, Kim‡ Changhoon, and Yu Minlan. 2016. LossRadar:
Fast Detection of Lost Packets in Data Center Networks. In CoNEXT (Irvine,
California, USA). ACM, New York, NY, USA, 15 pages.

[67] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan,
Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y. Zhao, and Haitao Zheng. 2015.
Packet-Level Telemetry in Large Datacenter Networks. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication (London,
United Kingdom) (SIGCOMM ’15). ACM, New York, NY, USA, 479–491. https:
//doi.org/10.1145/2785956.2787483

http://www.ietf.org/rfc/rfc3176.txt
http://www.ietf.org/rfc/rfc4271.txt
https://www.spacex.com/webcast
https://www.usenix.org/conference/nsdi18/presentation/tilmans
https://www.usenix.org/conference/nsdi18/presentation/tilmans
https://www.cs.princeton.edu/~jrex/papers/snappy18.pdf
https://www.cs.princeton.edu/~jrex/papers/snappy18.pdf
https://doi.org/10.1145/2785956.2787483
https://doi.org/10.1145/2785956.2787483

	Abstract
	1 Introduction
	2 Motivation
	2.1 Design constraints

	3 Overview
	4 RouteScout Data Plane
	4.1 Selector stage
	4.2 Measuring delays
	4.3 Measuring loss rates
	4.4 Dealing with adversarial inputs

	5 Hardware Design
	6 RouteScout Control Plane
	6.1 Inputs
	6.2 Solver

	7 Evaluation
	7.1 Methodology
	7.2 Delay monitor
	7.3 Loss monitor
	7.4 Solver runtime

	8 Case studies
	8.1 Hardware testbed
	8.2 Achievable gains in the wild
	8.3 RouteScout in a network

	9 Conclusion
	10 Acknowledgments
	References

